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Introduction to TinyML
• Various techniques for accelerating Artificial Neural 

Networks (ANN) inference. These 
techniques include both:

• Hardware-level optimization
• Accelerator
• Processing in Memory (PIM)
• Scheduling

• Software-level optimization
• Neural Architecture Search (NAS)
• Pruning
• Quantization 

[Mohammad Shafique et al, “TinyML: Current Progress, Research Challenges, and Future Roadmap ”, 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021]
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Introduction to Spiking Neural Networks (SNN)
§ SNN tries to closely mimic the working of a human

brain. This is why instead of working with
continuously changing in time values used in ANN,
SNN operates with discrete events which occur at
certain points of time.

§ SNN receives a series of spikes as input and
produces a series of spikes as the output (a series of
spikes is usually referred to as spike trains).

§ Threshold models generate an impulse at a certain
threshold:
o Perfect Integrate-and-fire
o Leaky Integrate-and-fire (LIF)
o Adaptive Integrate-and-fire

image reference: https://cnvrg.io/spiking-neural-networks/
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Problem Definition and Research Objective

§ Problem Definition
o Edge devices are increasingly being deployed for on-device AI applications,

which demand low-latency and privacy-preserving computations.
o Traditional ML algorithms are not well-suited for implementation on low-power,

low-resource devices due to their high computational and energy requirements.
§ How to solve it?

o By developing an SNN architecture that mimics the biological processes of
neurons, we can significantly reduce power consumption since these networks
are event-driven and only process signals when necessary.

§ Research Objective
o To introduce a novel SNN architecture optimized for energy efficiency and low-

power edge devices.
o Implementation of the 1st Order Leaky Integrate-and-Fire (LIF) neuron model for

vision-based ML algorithms on TinyML systems.
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Proposed Approach

§ The image depicts a three-stage energy-aware framework for TinyML systems:
o A camera captures the scene (Sensing Stage), and the data is translated into spikes 

by a neuron model (Input Data Conversion)
o SNN software model predicts collision events (1st Order LIF Software Model)
o SNN model is implemented on an FPGA (Energy-Aware Hardware Design)
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Sensing Stage and Input Data Conversion

§ The dynamics of the membrane potential are 
governed by the differential equation, which 
describes how 𝑢 (𝑡) changes over time-based on 
the decay towards resting potential and the input 
current, with the membrane time constant 𝜏𝑚 = 
𝑅𝐶 characterizing the rate of decay.

𝜏!
𝑑"
𝑑#

= − 𝜇 𝑡 − 𝜇$%&# + 𝑅𝐼

§ In SNN coding technique is essential to convert static input data, such as images, into a 
dynamic, time-varying format that SNNs can process effectively.

§ LIF model
o Neuron is represented by a resistor (𝑅) and a capacitor (𝐶) in parallel, analogous to the cell 

membrane’s leak resistance and capacitance, respectively.
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Proposed 1st Order LIF Software Model

§ SNN model comprises three main 
layers:
o Input Layer: image pixels
o Hidden Layer: LIF neurons
o Output Layer: two classes

§ Refractory period
o is implemented by suppressing 

the firing of a neuron for a 
specified number of time steps 
after it spikes

Jetbot Icon: https://jetbot.org/master/ 6



Proposed Energy-Aware Hardware Design
§ Cascaded Adder: given that the input pixel values are binary (0 or 1), the 

standard matrix multiplication operation common in neural networks is simplified.
§ A cascaded adder replaces the 

need for multipliers, which are 
traditionally more resource-
intensive on silicon.

§ LIF Neuron Hardware: its primary 
functionality revolves around 
processing input signals, 
accumulating them over time, and 
generating an output spike under 
certain conditions, akin to a 
neuron firing in response to 
stimuli

   𝑈 𝑡 + 1 = 	𝛽𝑈 𝑡 + 𝐼 𝑡 + 1 − 𝑈!"#$
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Proposed Energy-Aware Hardware Design
§ The figure illustrates how data moves through weight layers, is processed by 

cascaded adders, undergoes transformation by Leaky Integrate-and-Fire (LIF) 
neurons, and finally, how classification is determined by a comparator.

§ Each segment of the process is timed with clock cycles, showing a sequential 
processing order and synchronization within the hardware system.
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Energy-Efficient TinyML Systems Deployment
• Autonomous edge devices with AI-based visual navigation:  Accuracy, Latency and Power consumption

• UAV: 320x320 RGB camera, 512 KB memory, octa-core GAP8 low-power processor

• UGV: 1 GB memory, Raspberry Pi 

• HoloLens: Microsoft HoloLens 2

• Model Training Process: 
• Obstacle detection and Steering: Resnet trained on 33,000 images  from car driving 
• Person detection: Yolo-v4, COCO dataset
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Software Results
§ The LIF model demonstrated a training accuracy that slightly declined with increasing image 

size, starting at 93% for 32×32 images and decreasing to 88% for 128x128 images.
§ Testing accuracy for the LIF model showed a similar trend, with the highest accuracy of 85% for 

64×64 image size.
§ The LIF model is preferred for hardware implementations where mimicking biological neuron 

behavior is critical, such as in real-time collision avoidance systems.
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FPGA Deployment Results
§ To evaluate this work, we compare it with SOTA

o Binarized CNN (BCNN): Nakahara’17
o Spike Neural Mode: Walravens’20
o Wilson: Karimi’18
o Izhikevich: Murali’16

§ Model deployment on FPGA for SNN and BCNN comparison
o Power Consumption: 80% improvement
o Energy Efficiency: ~7.6x more efficient
o Performance: 2x faster

§ Proposed Neuron resource utilization comparison with SOTA 
o The strategic balance between:

• Resource utilization
• Operational frequency
• Power consumption

o The proposed 1𝑠𝑡 Order LIF model
• Operates at a frequency of 100 MHz 
• Exhibits lower power consumption at 85 mW
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FPGA Deployment Results
§ The operating frequency of the proposed SNN is 67 MHz, which is moderately placed 

among the referenced works.
§ It is notably lower than the highest frequency presented, but this is a strategic choice 

to balance power consumption and processing speed, which is often a critical 
consideration in embedded and real-time applications.

§ The comparison shows that while the proposed SNN requires more resources than 
some of the simpler models, it still operates effectively within the constraints of the 
Artix-7 device.
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Conclusion

§ Successfully introduced a SNN architecture optimized for energy-efficiency, ideal for 
deployment in edge devices.

§ Demonstrated significant energy savings with the implementation of 1st order LIF 
model, paving way for sustainable AI and remote applications.

§ Enabled vision-based machine learning algorithm to TinyML systems, opening new 
possibilities for advanced applications in compact devices in limited power.
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Experimental Setup

§ Implementation Platform
o Selection of FPGA as a device for implantation 

is driven by considerations including FPGAs 
offer a unique blend of flexibility and 
performance, allowing for rapid prototyping and 
iterative design that is crucial for the evolving 
field of SNNs.

o Selection of Xilinx Artix-7 FPGA for its balance 
between performance, cost, and energy 
efficiency.

(Image source: AMD)



FPGA Deployment Results
§ The proposed LIF neuron model gives strategic balance between resource utilization, 

operational frequency, and power efficiency.
§ The proposed 1𝑠𝑡 Order LIF model operates at a frequency of 100 MHz and exhibits 

lower power consumption at 85 mW.
§ Moreover, the reduced power usage of the proposed model extends the potential for 

deployment in power sensitive contexts, such as battery-operated embedded 
systems or portable devices requiring efficient neural network computation.
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