tinyML. Foundation

Enabling Ultra-low Power Machine Learning at the Edge

tinyML Summit April 22 - 24, 2024

Accelerating Model Optimization on the Edge Through Automated Performance Benchmarking and End-to-End Profiling

Nayara Aguiar, PhD
Performance Engineer
MathWorks

Deploying Al Models: A Tale on Performance

When does performance become a concern in your AI deployment pipeline?

Evaluating performance throughout the development process enables early detection of bottlenecks

Tracking performance makes it easier to pinpoint the source of issues

Mitigation of performance issues is less costly with early detection

Quality targets for final product can be met while enhancing development process

Optimizing performance of the AI deployment pipeline presents multiple challenges

We will focus on our ongoing efforts to enhance the process for performance benchmarking and profiling

Automating Performance Benchmarking

Enabling End-to-End Performance Profiling

Integrating MLPerfTM to our internal performance benchmarking strategy helped us standardize tooling

125+

MLCommons Members and Affiliates

6
Benchmark Suites

47,000+

MLPerf Performance Results to-date

We used automation to enhance the benchmarking process

This benchmark can also be wrapped in our testing infrastructure for further automation

- Select pre-trained models:
 - mobilenetv2
 - resnet50
- 2. Create configurations for Raspberry Pi runs:
 - Using original network (FP32)
 - Using quantized network (INT8)
 - Using network equalized before quantization (INT8)
- 3. Batch size:
 - 1024
- 4. Select benchmark mode:
 - AccuracyOnly, SingleStream

	Original (FP32)	Quantized (INT8)	Equalized (INT8)
mobilenetv2	70.3%	0.2%	60.3%
resnet50	72.2%	69.3%	68.9%

Automated benchmarks allow for performance monitoring ... and profiling helps investigating performance bottlenecks

We will focus on our ongoing efforts to enhance the process for performance benchmarking and profiling

Automating Performance Benchmarking

Enabling End-to-End Performance Profiling

We develop tools that cover the entire AI deployment pipeline

High-level code

To facilitate end-to-end performance investigations, we developed the Unified Timeline

The *Unified Timeline* facilitates performance analysis across the AI deployment pipeline

Generic

Easy to use

Continuously enhanced

We can use our in-house profiling tool to investigate performance bottlenecks

Inference for image classification

```
tic
output = net.predict(img);
toc
```

profile on
output = net.predict(img);
profile off

Total time

Time breakdown

We can visualize the timeline for this code in a browser and zoom in stacks of interest

Inference for image classification

Make performance a core aspect for AI applications on the edge

Explore performance profiling tools

... accelerate model optimization on the edge

Copyright Notice

This presentation in this publication was presented at the tinyML® Summit 2024. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org