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Problem
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Speech to numerical input

Automatic recognition of a pronounced phone number

What systems are capable of:

à + 4 9 7 2 1 1 7 8 3 3 2 4 4 1

Reality:

à + 49 72 11 78 33 24 41

We want a local system that is able to perform this task 
– is there a dataset for this?

• Speech Commands/AudioMNIST: numbers 0 to 9

• Most datasets are monolingual

• Combining different data sets leads to inconsistent 
data quality
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Classification of spoken numbers

Spoken 
numbers from

0 to 99

Four different 
languages: English, 
Mandarin, German 

and French
In total: 12,800 
audio samples

32 different 
speaker

à All data is artificially generated

Transparent, 
open-source,
reproducible
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Completely artificially generated data

à ChatGPT 3.5
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Completely artificially generated data
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Descriptive statistics of the generated data

• Audio length increases as the numerical 
value increases

• Mandarin most efficient

• German numbers are the longest, 
except for higher numbers where French 
takes over

• Fundamental frequency similar for 
every speaker and every language

• Wide variety of fundamental 
frequencies
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Dimensionality reduction of Mel-Spectrograms using UMAP

• Languages cluster
together in the 2D 
visualization

• No clear clusters emerge
when color-coded based
on speakers

• No clear clusters emerge
when color-coded based
on spoken number



Benchmark task design
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We introduce two classification tasks

8-fold cross-validation

Classification of

a) Languages (Four classes)

b) Spoken numbers for any language (100 classes)



Architecture # Parameters Test Accuracy
Languages

Test Accuracy
Numbers

1D CNN 16,368,340 0.815 ± 0.029 0.132 ± 0.015
2D CNN 1,891,972 0.927 ± 0.017 0.565 ± 0.054

RNN 5,709,700 0.920 ± 0.015 0.614 ± 0.041
EfficientNet-B0 CNN 5,365,415 0.963 ± 0.011 0.848 ± 0.037

Transformer 1,352,324 0.945 ± 0.012 0.729 ± 0.046

Results
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Baseline performance

à Not deployable to a microcontroller



Results
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EvoNAS: Optimizing an architecture for MCU

Groh and Kist – „End-to-end evolutionary neural architecture search for microcontroller units”, 2023

nRF52840

• 64 MHz Cortex-M4
• 1 MB Flash
• 256 KB SRAM

Source: https://www.nordicsemi.com/

à Goal: Maximize fitness which is a metric that combines multiple 
objectives (accuracy, inference time, energy consumption)



Results
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Benchmark results for MCU-optimized architectures

Architecture # Parameters Inference
Time (ms)

Test Accuracy
Languages

Test Accuracy
Numbers

EfficientNet-B0 
CNN

5,365,415 Not 
deployable

0.963 ± 0.011 0.848 ± 0.037

Most accurate 18,264 1761 0.837 ± 0.022 0.175 ± 0.025
Fastest 6,496 152 0.364 ± 0.027 0.022 ± 0.003
Fittest 5,379 368 0.813 ± 0.021 0.126 ± 0.020

à Proof-of-concept: huge optimization potential



Results
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Fittest model architecture
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Conclusion
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https://zenodo.org/records/10810044

• SpokeN-100: Artificially generated speech recognition 
dataset with spoken numbers from 0 to 99 in four different 
languages

• It can serve as a benchmark for tinyDL datasets

• Data is not noisy, as with most other data sets à perfect for 
deep learning training, as you can control the amount of 
noise yourself

• High practical relevance for tinyDL applications: robot
navigation, interaction with wearable devices, …

• Possibility to expand the database as required (voice 
cloning)
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