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Motivations and Contributions

• AI for audio processing on embedded devices
oSub-8-bit arithmetic can be quite efficient
oExisting quantization tools have limited support for sub-8-bit or GRUs
oQuantization parameters can be tedious to tune

• We propose:
o Integer modular quantization scheme for GRUs
oGenetic search for Pareto-optimal any-bit quantization scheme
oEvaluation on sequence classification tasks of varying complexity
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Background | Gated Recurrent Unit (GRU)

• GRUs are a class of Recurrent Neural Networks
oOutput depends on current input and previous output
oCan process sequential data of arbitrary length
oOften used in audio applications

• Like LSTMs, but more compact
oAddress vanishing/exploding gradient
o3 gates: reset, update, new state
o Internal state is the output
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Background | Quantization

• Map continuous data (high bit-width) into a discrete set (low bit-width)
o Decrease storage, memory, and compute requirements
o Lower precision might affect performances

• Linear/uniform quantization
o Straightforward and most popular
o Parameterized by bit-width, scaling factor S, and zero-point Z
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Background | Genetic Algorithms (GA)

• Class of optimization algorithms
o Inspired by biological principles (natural selection, evolution)
o Suitable for non-differentiable multidimensional problems

• Start with a random population
o Each specimen is a potential 

solution characterized by 
its genome

o Solutions are evaluated, ranked, 
and selected for mating

o New specimens are generated 
through crossover and mutation

o Repeat with new specimens
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Methods | Modular quantization for GRUs

• Operators inside a GRU Cell
o Linear/dense (matmul)
o Hadamard (element-wise) product
o Element-wise sum
o Non-linearities: sigmoid, tanh

• Derive quantized versions
o Substitute dequantization equation to the 

operator definition
o Solve for quantized output
o Combine scaling factors and convert to 

fixed-point
• For non-linearities, use look-up tables
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Methods | Quantization scheme search

• Genetic algorithm: NSGA-II
o Selection step based on Pareto efficiency
o Genome: bit-width (from 2 to 8 incl.) of 

each quantized operator, 17 in total
o 40 initial specimens, 20 generations

• Fitness metrics
o Model accuracy, computed on a validation 

set after quantization
o Normalized complement of model size, 

based on number of trainable parameters
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Results | Experimental setup

• Tasks and Datasets
o MNIST (row-wise or pixel-wise): 28 timesteps × 28 features or 361 scalar timesteps
o SpeechCmd (4 and 10 keywords): 63 timesteps × 40 features (Mel-Spectrogram)

• Model
o GRU → FC → SoftMax; 256 or 128 hidden units

• Quantization
o QAT on MNIST tasks (10% train set, learning rate = 1e-5)
o PTQ on SpeechCmd tasks (100% train set for calibration)

• Baseline
o Homogeneous quantization (bit-widths from 3 to 8 incl.)

• Evaluation metrics
o Same as fitness metrics
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Results | Genetic search
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Results | Pareto fronts
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Results | Observations

• Over the generations in the search:
o Average accuracy increases
o Model size decreases

• When using genetic search, we:
o Exceed the Pareto fronts of baselines
o Maintain 8-bit baseline performances
o Achieve a model size reduction between 25% and 55%

• …except for SpeechCmd10
o We experience a 17% drop in max accuracy
o High bit-width solutions are not explored
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Conclusion | Limitations and Future work

• Most of the derived solutions are low in accuracy
oConstrain fitness metrics during survival step
oSplit search into exploration and exploitation phases

• Can it scale to more challenging scenarios?
oApply to larger tasks/models (e.g. speech enhancement)
oExtend genome (e.g. observer types and granularity)

• Need for dedicated hardware support
oSome SoCs might support this (e.g. GAP9 vectorized 2/4-bit arithmetic)
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Conclusion | Summary

• In this work, we:
o Introduce a modular integer quantization scheme for GRUs
oApply a multi-objective genetic search of quantization parameters
oEvaluate the system on sequence classification tasks

• Results:
oHeterogeneous solutions are more Pareto-efficient
oSubstantial decrease in model size with comparable accuracy
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