tinyML Foundation
Enabling Ultra-low Power Machine Learning at the Edge

tinyML Summit April 22 - 24, 2024
Deploying ONNX models on embedded devices with TensorFlow Lite inference engine using conversion-based approach

Robert Kalmar, Lukas Sztefek, Martin Pavella, Pavel Macenauer

April 2024
Motivation

ONNX

• De facto a standard exchange format for DNN models.
• Rich ecosystem of ML frameworks for model development with export capabilities to ONNX format.

TensorFlow Lite

• Inference engine and model format.
• Mature and well-established support among embedded NPU vendors and solutions.
• Embedded GPU and microcontrollers support.
Design Objectives

- Standalone converter
- Efficient and clear operator mapping
- Straightforward conversion flow
- Floating point and quantized model
- Mathematical equivalence
- Focus on NPU performance

ONNX to TFLite conversion
Mapping the ONNX Operators into the TensorFlow Lite

ONNX Operators
- 187 ONNX operators (v1.14)
- 97 ONNX Runtime operators (v1.16.0)

Standard is to have all the operators documented in markdowns, including changes between operator versions. For ONNX operators, reference implementation is available.

TensorFlow Lite Operators
- 162 TFLite operators (v2.14)
- 753 Selectable TensorFlow operators (Flex Delegate)

Almost no documentation is available, details are retrieved directly from source code. Reference implementation is helpful here.

Performance Aware Operator mapping
- 80% of ONNX operators can be mapped into TensorFlow Lite.
- 85% when including the selectable operators from TensorFlow.

TensorFlow Lite enables Custom Operators, what can be used for the remaining ONNX operators.

<table>
<thead>
<tr>
<th>ONNX operator</th>
<th>Naive TFLite</th>
<th>Optimal TFLite</th>
<th>Fallback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group convolution</td>
<td>Conv2D, Conv3D</td>
<td>DepthwiseConv2/3D Split Conv2/3D</td>
<td>Conv2D, Conv3D</td>
</tr>
<tr>
<td>Clip</td>
<td>Min + Max</td>
<td>Relu</td>
<td>Min + Max</td>
</tr>
<tr>
<td>Gemm</td>
<td>BatchMatMul</td>
<td>FullyConnected</td>
<td>BatchMatmul</td>
</tr>
</tbody>
</table>
Shape Inference: Handling Model Dynamicity

For ONNX models it is usual the shapes of internal tensors are not declared in the model.

NPU-like HW accelerators typically don’t support dynamic tensor shapes and requires the shapes to be declared in the model.

(Symbolic) Shape inference:
- Base implementation in ONNX Runtime
- Extended by registering “custom” shape resolvers for required operators.

<table>
<thead>
<tr>
<th>Tensor shape dynamism</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dynamism</td>
<td>Shape inference</td>
</tr>
<tr>
<td>Dynamism based on input tensor shape using a symbolic dimension</td>
<td>Shape inference + user input of desired values for symbolic dimensions</td>
</tr>
<tr>
<td></td>
<td>Side effect: Unnecessary compute logic in the graph, what can be removed.</td>
</tr>
<tr>
<td>Dynamism based on input value</td>
<td>Cannot determine tensor shapes statically.</td>
</tr>
</tbody>
</table>
Format Inference: Converting Channels First to Channels Last

ONNX native data layout format is Channels First (NCHW), whereas for TensorFlow Lite it is Channels Last (NHWC).

Using Transpose operators to convert the layout has significant impact on final performance. Tensors must be transposed statically during the conversion.

<table>
<thead>
<tr>
<th>Post Processing Approach</th>
<th>Preprocessing Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially, all the necessary Transpose operation are inserted to build the conversion logic from Channels First to Channels Last into the model. Consequently, in the graph optimization phase, these transpositions are removed, and the weight tensors are transposed accordingly.</td>
<td>Before the conversion, Tensor Format Inference is executed to determine the format of each tensor in the compute graph. The tensor format is consequently used during the operator conversion, and the weights are transposed accordingly in this step.</td>
</tr>
</tbody>
</table>
Mapping the ONNX Quantization into TensorFlow Lite

ONNX

- Quantized model representation:
 - **Operator Oriented** (QOperator),
 - **Tensor Oriented** (QDQ - Quantize–DeQuantize)
- Limited number of QOperators available
- Asymmetric and Symmetric 8-bit quantization
- Quantization parameter are input of the operators

TFLite

- Quantized model representation:
 - Only sort of **Operator Oriented** representation, no separate operators for quantized compute
- Decent number of operators available for quantized compute
- Asymmetric and Symmetric 8-bit and Hybrid 8/16-bit quantization
- Quantization parameters are part of the tensors

Both use same quantization formula and applies similar constraints for operators.

\[
\text{val_fp32} = \text{scale} \times (\text{value_quantized} - \text{zero_point})
\]
Conversion Flow Details

For successful conversion, the tensor shapes and format must be fixed. The Shape Inference step is involved to derive the tensor shapes, based on:
- input tensor dimensions
- user-provided desired values for unknown input dimensions
- constant folding

ONNX operators are converted to TFLite using the mapping rules.
Special treatment is used for QDQ clusters to convert them into corresponding quantized TFLite operator.

ONNX Model Parsing

Shape & Format Inference

QDQ Clustering

Operator Conversion

Graph Optimization

Tensor Conversion

Conversion & Mapping

ONNX2TFLite

model.onnx

model.tflite

The input, output and intermediate tensors are created. The tensor names are preserved.
QDQ Clustering algorithm identifies operations represented in QDQ format.
Example: Convert the AlexNet Model

Floating Point Model

QOperator Model

QDQ Model

Model Source: https://pytorch.org/vision/stable/models/alexnet.html
Performance Comparison

- PyTorch Vision Models [1]
- End-to-End flow:
 - PyTorch model -> export -> ONNX model -> quantization -> Quantized ONNX model -> onnx2tflite -> TFLite model
- Platform i.MX 8M Plus, Linux 6.6.3_1.0.0
 - 4x Cortex A53
 - 2.3 TOps NPU
 - ONNX Runtime 1.16.1; TensorFlow Lite 2.14.0
- Results:
 - Comparable performance btw. ONNX Runtime and TensorFlow Lite on CPU for both float and quantized model.
 - **Conversion to TFLite enables to run the model on existing TFLite runtime for the NPU. Achieved more than 20x acceleration leveraging the NPU.**

Integration into NXP eIQ® Toolkit

NXP ML Toolkit for End-to-End Model Development and Deployment

eIQ Portal ->
Model Tool ->
Options ->
Convert ->
eiq-converter-onnx2tflite

Get In Touch

Robert Kalmar
robert.Kalmar@nxp.com
Copyright Notice

This presentation in this publication was presented at the tinyML® Summit 2024. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org