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ONNX
• De facto a standard exchange format for DNN 

models.
• Rich ecosystem of ML frameworks for model 

development with export capabilities to ONNX 
format. 

Motivation 

TensorFlow Lite
• Inference engine and model format.
• Mature and well-established support among 

embedded NPU vendors and solutions.
• Embedded GPU and microcontrollers support.

Embedded GPU

Microcontrolers

Export

… and other frameworks 
which exports to ONNX

Exchange Format

NXP eIQ® Neutron NPU
Arm Ethos-U NPU
Verisilicon VIP8000 NPU
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Design Objectives

ONNX to TFLite 
conversion

Efficient and clear 
operator 
mapping

Straightforward 
conversion flow

Mathematical 
equivalence

Floating point 
and quantized 

model

Standalone 
converter

Focus on NPU 
performance
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ONNX Operators
187 ONNX operators (v1.14)

97 ONNX Runtime operators (v1.16.0)
Standard is to have the all the operators documented in 
markdowns, including changes between operator versions. 
For ONNX operators reference implementation is available.

Mapping the ONNX Operators into the TensorFlow Lite

Performance Aware Operator mapping
80% of ONNX operators can be mapped into TensorFlow Lite. 
85% when including the selectable operators from TensorFlow.
TensorFlow Lite enables Custom Operators, what can be used for the 
remaining ONNX operators. 

TensorFlow Lite Operators
162 TFLite operators (v2.14)

753 Selectable TensorFlow operators (Flex Delegate)
Almost no documentation is available, details are retrieved 
directly from source code. Reference implementation is helpful 
here. 

ONNX operator Naive TFLite Optimal TFLite Fallback

Group convolution Conv2D, Conv3D DepthwiseConv2/3D
Split Conv2/3D

Conv2D, Conv3D

Clip Min + Max Relu Min + Max

Gemm BatchMatMul FullyConnected BatchMatmul
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For ONNX models it is usual the shapes of internal tensors 
are not declared in the model. 
NPU-like HW accelerators typically don’t support dynamic 
tensor shapes and requires the shapes to be declared in 
the model.
(Symbolic) Shape inference:
− Base implementation in ONNX Runtime
− Extended by registering “custom” shape resolvers for required 

operators. 

Shape Inference: Handling Model Dynamicity

Tensor shape dynamism Solution

No dynamism Shape inference

Dynamism based on input tensor shape 
using a symbolic dimension

Shape inference + user input of desired 
values for symbolic dimensions
Side effect: Unnecessary compute logic in 
the graph, what can be removed.

Dynamism based on input value Cannot determine tensor shapes statically. 
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ONNX native data layout format is Channels First (NCHW), whereas for TensorFlow Lite it is 
Channels Last (NHWC). 
Using Transpose operators to convert the layout has significant impact on final 
performance. Tensors must be transposed statically during the conversion. 

Format Inference: Converting Channels First to Channels Last

Post Processing Approach
Initially, all the necessary Transpose operation 
are inserted to build the conversion logic from 
Channels First to Channels Last into the model. 
Consequently, in the graph optimization phase, 
these transpositions are removed, and the 
weight tensors are transposed accordingly. 

Preprocessing Approach
Before the conversion, Tensor Format Inference 
is executed to determine the format of each 
tensor in the compute graph. 
The tensor format is consequently used during 
the operator conversion, and the weights are 
transposed accordingly in this step. 
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ONNX
• Quantized model representation: 
− Operator Oriented (QOperator), 

− Tensor Oriented (QDQ -  Quantize-DeQuantize)

• Limited number of QOperators available
• Asymmetric and Symmetric 8-bit quantization

• Quantization parameter are input of the operators

Mapping the ONNX Quantization into TensorFlow Lite

TFLite
• Quantized model representation: 

− Only sort of Operator Oriented representation, no separate 
operators for quantized compute

• Decent number of operators available for quantized 
compute

• Asymmetric and Symmetric 8-bit and Hybrid 8/16-bit 
quantization

• Quantization parameters are part of the tensors

Both use same quantization formula and applies similar 
constraints for operators.

val_fp32 = scale * (value_quantized – zero_point)
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Conversion Flow Details

For successful conversion, the tensor shapes 
and format must be fixed. The Shape 
Inference step is involved to derive the tensor 
shapes, base on: 
• input tensor dimensions
• user-provided desired values for unknown 

input dimensions
• constant folding

During graph optimization, the converter 
further optimize the graph by:
• fusing the activation,
• removing dead nodes, 
• removing mutually inverse transformation, 
• removing no-ops sequences,
• removing unused tensors

The input, output and intermediate 
tensors are created. The tensor names 
are preserved. 

QDQ Clustering algorithm identifies 
operations represented in QDQ format. 

ONNX operators are converted to TFLite 
using the mapping rules. 

Special treatment is used for QDQ clusters 
to convert them into corresponding 
quantized TFLite operator. 

Conversion & Mapping

ONNX Model 
Parsing

Shape & 
Format 

Inference

Graph 
Optimization

Tensor Conversion

Operator Conversion

TFLite 
Serialization

QDQ Clustering

ONNX2TFLitemodel.onnx model.tflite
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Example: Convert the AlexNet Model

Model Source:  https://pytorch.org/vision/stable/models/alexnet.html 

Floating Point 
Model

QOperator 
Model

QDQ Model

https://pytorch.org/vision/stable/models/alexnet.html
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• PyTorch Vision Models [1]
• End-to-End flow: 
− PyTorch model -> export ->  ONNX model -> quantization -> 

Quantized ONNX model -> onnx2tflite -> TFLite model
• Platform i.MX 8M Plus, Linux 6.6.3_1.0.0
− 4x Cortex A53
− 2.3 TOps NPU
− ONNX Runtime 1.16.1; TensorFlow Lite 2.14.0

• Results: 
− Comparable performance btw. ONNX Runtime and 

TensorFlow Lite on CPU for both float and quantized model.
− Conversion to TFLite enables to run the model on existing 

TFLite runtime for the NPU. Achieved more than 20x 
acceleration leveraging the NPU. 

Performance Comparison

[1] https://pytorch.org/vision/stable/models.html

218

761

384

110

2057

238

1924

218

907

374

107

2045

230

1924

0 500 1000 1500 2000 2500

alexnet-float

densenet121-float

googlenet-float

mobilenet_v2-float

resnet101-float

squeezenet1_0-float

vgg11-float

Float Models [ms]

6.4

113.5

28.6

4.1

37.3

28.5

14.9

178

749

345

119

1663

218

1592

167

818

320

90

1653

188

1605

0 200 400 600 800 1000 1200 1400 1600 1800

alexnet-quant

densenet121-quant

googlenet-quant

mobilenet_v2-quant

resnet101-quant

squeezenet1_0-quant

vgg11-quant

Quantized Models [ms] 

ONNX Runtime CPU TFLite CPU TFLite NPU
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NXP ML Toolkit for End-to-End 
Model Development and 
Deployment

eIQ Portal ->
  Model Tool -> 
    Options       -> 
      Convert       -> 
        eiq-converter-onnx2tflite

Integration into NXP eIQ® Toolkit

 https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-
TOOLKIT 

https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
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