

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

April 2024

Robert Kalmar, Lukas Sztefek,
Martin Pavella, Pavel Macenauer

Deploying ONNX models on
embedded devices with
TensorFlow Lite inference engine
using conversion-based approach

| NXP | Public3

ONNX
• De facto a standard exchange format for DNN

models.
• Rich ecosystem of ML frameworks for model

development with export capabilities to ONNX
format.

Motivation

TensorFlow Lite
• Inference engine and model format.
• Mature and well-established support among

embedded NPU vendors and solutions.
• Embedded GPU and microcontrollers support.

Embedded GPU

Microcontrolers

Export

… and other frameworks
which exports to ONNX

Exchange Format

NXP eIQ® Neutron NPU
Arm Ethos-U NPU
Verisilicon VIP8000 NPU

| NXP | Public4

Design Objectives

ONNX to TFLite
conversion

Efficient and clear
operator
mapping

Straightforward
conversion flow

Mathematical
equivalence

Floating point
and quantized

model

Standalone
converter

Focus on NPU
performance

| NXP | Public5

ONNX Operators
187 ONNX operators (v1.14)

97 ONNX Runtime operators (v1.16.0)
Standard is to have the all the operators documented in
markdowns, including changes between operator versions.
For ONNX operators reference implementation is available.

Mapping the ONNX Operators into the TensorFlow Lite

Performance Aware Operator mapping
80% of ONNX operators can be mapped into TensorFlow Lite.
85% when including the selectable operators from TensorFlow.
TensorFlow Lite enables Custom Operators, what can be used for the
remaining ONNX operators.

TensorFlow Lite Operators
162 TFLite operators (v2.14)

753 Selectable TensorFlow operators (Flex Delegate)
Almost no documentation is available, details are retrieved
directly from source code. Reference implementation is helpful
here.

ONNX operator Naive TFLite Optimal TFLite Fallback

Group convolution Conv2D, Conv3D DepthwiseConv2/3D
Split Conv2/3D

Conv2D, Conv3D

Clip Min + Max Relu Min + Max

Gemm BatchMatMul FullyConnected BatchMatmul

| NXP | Public6

For ONNX models it is usual the shapes of internal tensors
are not declared in the model.
NPU-like HW accelerators typically don’t support dynamic
tensor shapes and requires the shapes to be declared in
the model.
(Symbolic) Shape inference:
− Base implementation in ONNX Runtime
− Extended by registering “custom” shape resolvers for required

operators.

Shape Inference: Handling Model Dynamicity

Tensor shape dynamism Solution

No dynamism Shape inference

Dynamism based on input tensor shape
using a symbolic dimension

Shape inference + user input of desired
values for symbolic dimensions
Side effect: Unnecessary compute logic in
the graph, what can be removed.

Dynamism based on input value Cannot determine tensor shapes statically.

| NXP | Public7

ONNX native data layout format is Channels First (NCHW), whereas for TensorFlow Lite it is
Channels Last (NHWC).
Using Transpose operators to convert the layout has significant impact on final
performance. Tensors must be transposed statically during the conversion.

Format Inference: Converting Channels First to Channels Last

Post Processing Approach
Initially, all the necessary Transpose operation
are inserted to build the conversion logic from
Channels First to Channels Last into the model.
Consequently, in the graph optimization phase,
these transpositions are removed, and the
weight tensors are transposed accordingly.

Preprocessing Approach
Before the conversion, Tensor Format Inference
is executed to determine the format of each
tensor in the compute graph.
The tensor format is consequently used during
the operator conversion, and the weights are
transposed accordingly in this step.

| NXP | Public8

ONNX
• Quantized model representation:
− Operator Oriented (QOperator),

− Tensor Oriented (QDQ - Quantize-DeQuantize)

• Limited number of QOperators available
• Asymmetric and Symmetric 8-bit quantization

• Quantization parameter are input of the operators

Mapping the ONNX Quantization into TensorFlow Lite

TFLite
• Quantized model representation:

− Only sort of Operator Oriented representation, no separate
operators for quantized compute

• Decent number of operators available for quantized
compute

• Asymmetric and Symmetric 8-bit and Hybrid 8/16-bit
quantization

• Quantization parameters are part of the tensors

Both use same quantization formula and applies similar
constraints for operators.

val_fp32 = scale * (value_quantized – zero_point)

| NXP | Public9

Conversion Flow Details

For successful conversion, the tensor shapes
and format must be fixed. The Shape
Inference step is involved to derive the tensor
shapes, base on:
• input tensor dimensions
• user-provided desired values for unknown

input dimensions
• constant folding

During graph optimization, the converter
further optimize the graph by:
• fusing the activation,
• removing dead nodes,
• removing mutually inverse transformation,
• removing no-ops sequences,
• removing unused tensors

The input, output and intermediate
tensors are created. The tensor names
are preserved.

QDQ Clustering algorithm identifies
operations represented in QDQ format.

ONNX operators are converted to TFLite
using the mapping rules.

Special treatment is used for QDQ clusters
to convert them into corresponding
quantized TFLite operator.

Conversion & Mapping

ONNX Model
Parsing

Shape &
Format

Inference

Graph
Optimization

Tensor Conversion

Operator Conversion

TFLite
Serialization

QDQ Clustering

ONNX2TFLitemodel.onnx model.tflite

| NXP | Public10

Example: Convert the AlexNet Model

Model Source: https://pytorch.org/vision/stable/models/alexnet.html

Floating Point
Model

QOperator
Model

QDQ Model

https://pytorch.org/vision/stable/models/alexnet.html

| NXP | Public11

• PyTorch Vision Models [1]
• End-to-End flow:
− PyTorch model -> export -> ONNX model -> quantization ->

Quantized ONNX model -> onnx2tflite -> TFLite model
• Platform i.MX 8M Plus, Linux 6.6.3_1.0.0
− 4x Cortex A53
− 2.3 TOps NPU
− ONNX Runtime 1.16.1; TensorFlow Lite 2.14.0

• Results:
− Comparable performance btw. ONNX Runtime and

TensorFlow Lite on CPU for both float and quantized model.
− Conversion to TFLite enables to run the model on existing

TFLite runtime for the NPU. Achieved more than 20x
acceleration leveraging the NPU.

Performance Comparison

[1] https://pytorch.org/vision/stable/models.html

218

761

384

110

2057

238

1924

218

907

374

107

2045

230

1924

0 500 1000 1500 2000 2500

alexnet-float

densenet121-float

googlenet-float

mobilenet_v2-float

resnet101-float

squeezenet1_0-float

vgg11-float

Float Models [ms]

6.4

113.5

28.6

4.1

37.3

28.5

14.9

178

749

345

119

1663

218

1592

167

818

320

90

1653

188

1605

0 200 400 600 800 1000 1200 1400 1600 1800

alexnet-quant

densenet121-quant

googlenet-quant

mobilenet_v2-quant

resnet101-quant

squeezenet1_0-quant

vgg11-quant

Quantized Models [ms]

ONNX Runtime CPU TFLite CPU TFLite NPU

https://pytorch.org/vision/stable/models.html

| NXP | Public12

NXP ML Toolkit for End-to-End
Model Development and
Deployment

eIQ Portal ->
 Model Tool ->
 Options ->
 Convert ->
 eiq-converter-onnx2tflite

Integration into NXP eIQ® Toolkit

 https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-
TOOLKIT

https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

Get In Touch

Robert Kalmar
robert.Kalmar@nxp.com

mailto:Robert.Kalmar@nxp.com

