tinyML. Foundation

Enabling Ultra-low Power Machine Learning at the Edge

tinyML Summit April 22 - 24, 2024

www.tinyML.org

Deploying ONNX models on
embedded devices with
TensorFlow Lite inference engine
using conversion-based approach

Robert Kalmar, Lukas Sztefek,
Martin Pavella, Pavel Macenauer

April 2024

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

Motivation

ONNX TensorFlow Lite
 De facto a standard exchange format for DNN * Inference engine and model format.
models. « Mature and well-established support among
* Rich ecosystem of ML frameworks for model embedded NPU vendors and solutions.
development with export capabilities to ONNX - Embedded GPU and microcontrollers support.

format.

NXP elQ® Neutron NPU
O PyTorch o pang0 Py
xnet
NVIDIA. @ O N NX TensorFlow Lite Embedded GPU

TAO
... and other frameworks
which exports to ONNX .
Microcontrolers

3 | NXP | Public

Design Objectives
Standalone
converter

Efficient and clear
operator

mapping

Straightforward
conversion flow

4 | NXP | Public

ONNX to TFLite
conversion

Floating point
and quantized
model

Mathematical
equivalence

Focus on NPU
performance

Mapping the ONNX Operators into the TensorFlow Lite

ONNX Operators TensorFlow Lite Operators
187 ONNX operators (v1.14) 162 TFLite operators (v2.14)
97 ONNX Runtime operators (v1.16.0) 753 Selectable TensorFlow operators (Flex Delegate)
Standard is to have the all the operators documented in Almost no documentation is available, details are retrieved
markdowns, including changes between operator versions. directly from source code. Reference implementation is helpful
For ONNX operators reference implementation is available. here.

Performance Aware Operator mapping
80% of ONNX operators can be mapped into TensorFlow Lite.
85% when including the selectable operators from TensorFlow.

TensorFlow Lite enables Custom Operators, what can be used for the
remaining ONNX operators.

Group convolution Conv2D, Conv3D DepthwiseConvZ/SD Conv2D, Conv3D
Split Conv2/3D

Clip Min + Max Relu Min + Max

Gemm BatchMatMul FullyConnected BatchMatmul

5 | NXP | Public

Shape Inference: Handling Model Dynamicity

For ONNX models it is usual the shapes of internal tensors
are not declared in the model.

NPU-like HW accelerators typically don't support dynamic
tensor shapes and requires the shapes to be declared in
the model.
(symbolic) Shape inference:

- Base implementation in ONNX Runtime

- Extended by registering “custom” shape resolvers for required
operators.

No dynamism Shape inference

Dynamism based on input tensor shape
using a symbolic dimension

Shape inference + user input of desired
values for symbolic dimensions

Dynamism based on input value Cannot determine tensor shapes statically.

6 | NXP | Public

Conv
W {1280x320x1x1)
B {1280)

Clip

min (1)
max (1)
ta b
4 N
ll' S
’

Gather

Unsqueeze

.
: '
4 ’
' [
H '
]
N .
N .
' .
. .
'y .,
b J

K ’

. ’

\ ’
\)
GlobalAveragePool [J/
(Y ’
. s, 'l
s Q
S .
\‘ "

Reshape

B (1000x1280)
c {1000)

- .~

- -
..........

output

2x320x7x=7

Conv

W {1280x320x1x1}

B {1280}
2x1280xTx7
Clip

min (1)

max (1) peen

'l

.
.
2:1230§‘3x7
.

L]
Hll Gather
2x1280=7x7 ;

-
:
!

Unsqueeze

H Concat

‘‘‘‘‘

.......
s

-

B (1000x1280)
C {1000}

s

.
.~ oo
|

output

Format Inference: Converting Channels First to Channels Last

ONNX native data layout format is Channels First (NCHW), whereas for TensorFlow Lite it is
Channels Last (NHWC).

Using Transpose operators to convert the layout has significant impact on final
performance. Tensors must be transposed statically during the conversion.

Post Processing Approach Preprocessing Approach

Initially, all the necessary Transpose operation Before the conversion, Tensor Format Inference
are inserted to build the conversion logic from is executed to determine the format of each

Channels First to Channels Last into the model. tensor in the compute graph.

Consequently, in the graph optimization phase, The tensor format is consequently used during
these transpositions are removed, and the the operator conversion, and the weights are
weight tensors are transposed accordingly. transposed accordingly in this step.

7 | NXP | Public

Mapping the ONNX Quantization into TensorFlow Lite

Conv

ONNX

» Quantized model representation: Qe«%“ X
O
- Operator Oriented (QOperator), &
. . . Dequantizelinear
- Tensor Oriented (QDQ - Quantize-DeQuantize) pp— -
. . . x_zero_point = -14
* Limited number of QOperators available " (23300
w_scale = 0.00285564...
« Asymmetric and Symmetric 8-bit quantization s sk anasese.
y_zero_point = -128
« Quantization parameter are input of the operators (862
TFLite

Quantized model representation:

- Only sort of Operator Oriented representation, no separate
operators for quantized compute

Decent number of operators available for quantized o S
compute Both use same quantization formula and applies similar

constraints for operators.

Asymmetric and Symmetric 8-bit and Hybrid 8/16-bit

quantization
val fp32 = scale * (value _quantized - zero_point)

Quantization parameters are part of the tensors

8 | NXP | Public

Conversion Flow Details

9

The input, output and intermediate
tensors are created. The tensor names
are preserved.

QDQ Clustering algorithm identifies
operations represented in QDQ format.

For successful conversion, the tensor shapes

and format must be fixed. The Shape

Inference step is involved to derive the tensor

shapes, base on:

* input tensor dimensions

+ user-provided desired values for unknown
input dimensions

+ constant folding

| NXP | Public

ONNX2TFLite

Conversion & Mapping

— —)

ONNX operators are converted to TFlLite
using the mapping rules.

Special treatment is used for QDQ clusters
to convert them into corresponding
quantized TFLite operator.

— —)

During graph optimization, the converter
further optimize the graph by:
+ fusing the activation,

* removing dead nodes,

+ removing mutually inverse transformation,
* removing Nno-ops sequences,

* removing unused tensors

Example: Convert the AlexNet Model

Floating Point
Model

1x3x224x224

Conv

W (64x3x11x11)
B {64)

W {192x64x5x%5)

MaxPool

Conv

W (384x192x3x3)
B (384)

10 | NXP | Public

input.1_channels_first l

1x3%224x224

Transp

1x224%224x3

paddings (4x2)

1x228x228x3

1x55x55x64

MaxPool2D

1x27%27%64

Conv2D
filter (192x5x5x64)
bias {192)

E

1x27%27x192
MaxPool2D

1x13%x13x192

Conv2D

er (384x3x3x192)
bias (384)
Relu

1x13x13%384

QOperator
Model

1x3x224x224

x_scale = 0.01865844...
x_zero_point = -14

w (64x3x11x11)
w_scale = 0.00736538..
w_zero_point = 0
y_scale = 0.14249978..
y_zero_point = -128

B (64)

MaxPool

QlinearConv

x_scale = 0.14249978...
x_zero_point = -128

w (192x64x5x5)
w_scale = 0.01753522...
w_zero_point = 0
y_scale = 0.33757373..
y_zero_point = -128

B (192)

MaxPool

QlinearConv

x_scale = 0.33757373...
x_zero_point = -128

w (384x192x3x3)
w_scale = 0.00673716..
w_zero_point = 0
y_scale = 0.43669316...
y_zero_point = -128

B (384)

e MaxPool2|

input.1_channels_first

1x3x224x224

1%224x224x3

1%224%224%3

paddings (4x2)

1%x228%228%3

filter {(64x11x11x3)
bias (64)

1x55x55%64

1x27x27x64

filter (192x5%5x64)
bias (192)

1%x27x27x192

MaxPool2|

Tx13x13x192

Conv2D

ter (384x3x3x192)
bias (384)

1x13x13x384

1%3%224%224

x (64)
x_scale = 0.00013742
x_zero_point = 0

x (64x3x11x11)
%_scale = 0.00736538.
x_zero_point = 0

Dequantizelinear

0.01865844...

x_zero_point = -14

x_scale

1x64x55x55

~ A
~ Quantizelinear ,
~
~ - _ 7
~ - -
-~ - —
// DequantizeLinear \
I x_scall 14249978 \
x_zero_point = -128 \
I \
! l
| MaxPool |
‘ l
1x64x27%27
! |
D tizeLi D tizeLi \ I
lequantizeLinear equantizeLinear - .
9 d Bl Quantizelinear |
x (192) x (192x64x5x%5) \
x_scale = 0.00249876... X_scale = 0.01753522... /
x_zero_point = 0 x_zero_point = 0 /

DequantizeLinear

14249978
28

x_scal

x_zero_point =

1x192x27 %27

Quantizelinear

Deguantizelinear

0.33757373...

ale =

QDQ Model

MaxPool

1x192x13%13

Model Source: https://pytorch.org/vision/stable/models/alexnet.htmi

input.1_channels_first

1x3x224x224

Transp

AN 1x224%224x3

1x224%224x3

paddings (4x2)

1x228%228x3

filter (64x11x11x3)
bias (64)

1x55x55x64

1x27x27x64

filter (192x5x5x64)
bias (192)

1%27x27x192

MaxPool2D

Tx13%13%192

https://pytorch.org/vision/stable/models/alexnet.html

Performance Comparison

Float Models [ms]

vggll-float

« PyTorch Vision Models [1]

squeezenetl_0-float

A End_tO_End ﬂOW: resnetlOl-float
- PyTorch model -> export -> ONNX model -> quantization -> |IEESEEEEEE
Quantized ONNX model -> onnx2tflite -> TFLite model googlenet-float
« Platform i.MX 8M Plus, Linux 6.6.3_1.0.0 “e“sel"e“z";'”‘ -
alexnet-float
- 4x Cortex A53 418
0 500 1000 1500
- 2.3 TOps NPU
- ONNX Runtime 1.16.1: TensorFlow Lite 2.14.0 Quantized Models [ms]
* Results: vggll-quant

- Comparable performance btw. ONNX Runtime and
TensorFlow Lite on CPU for both float and quantized model.

- Conversion to TFLite enables to run the model on existing
TFLite runtime for the NPU. Achieved more than 20x mobilenot_v2Eeeal
acceleration leveraging the NPU. googlenar-qneiy

squeezenetl_0-quant

resnetl01- quant

denseneti2l- quant
13.5

167
alexnet-quant 178

6.4
(0] 200 400 600 800 1000 1200 1400 1600 1800

[1] https://pytorch.org/vision/stable/models.html

B ONNX Runtime CPU m TFLite CPU TFLite NPU

1 | NXP | Public

https://pytorch.org/vision/stable/models.html

Integration into NXP elQ® Toolkit

elQ Portal

NXP ML Toolkit for End-to-End
Model Development and

Deployment

elQ Portal ->
Model Tool ->
Options ->
Convert ->
eig-converter-onnx2tflite

https:/ /www.nxp.com/design/design-center/software/eig-ml-development-environment/eig-toolkit-for-end-to-end-model-development-and-deployment:EIQ-

TensorFlo}
TensorFlow Lite (.tflite)

ONNX (.onnx)
Deepview RT (.rtm)

TensorFlow Lite Vela/iMX93 (.tflite)
TensorFlow Lite for Neutron (.tflite)

Conv

W (64x3x11x11)
B (64)

MaxPool

Conv

W {192x64x5x5)
8 (192)

MaxPool

Conv

W (384x192x3x3)
B (384)

Conv

W (256x384x3x3)
B (256)

Conv

W (256x256x3x3)
B (256)

MaxPool

input.1_channels_first 34

1x3x224x224

PLUG-INS REMOTE DEVICES

1x3x224x224

Transpose

perm {4)

1x224x224x3

Pad

1%228x228%3

Conv2D

filter (64x11x11x3)
bias (64)
Relu
1x55x55x64

MaxPool2D

1x27x27x64

Conv2D

filter (192x5x5x64)
bias (192)

Relu
1x27%27x192
MaxPool2D
1x13x13x192

Conv2D

1x13x13x384

SETTINGS MARKETPLACE

NODE PROPERTIES
type

name

location

ATTRIBUTES

dilation_h_factor
dilation_w_factor
fused_activatio...
padding
quantized_bias...
stride_h

stride_w
INPUTS
input

filter

bias

OUTPUTS

output

HELP

Conv2D

/[Features/features.1/Relu_output_0
18

2

1

1

RELU
VALID
FLOAT32
4

4

name: input.1_padded
name: Features.0.weight

name: features.0.bias

name: /features/features.1/Relu_output_

TOOLKIT

12 | NXP | Public

https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT

NXS

Get In Touch

Robert Kalmar
robert.Kalmar@nxp.com

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

mailto:Robert.Kalmar@nxp.com

Copyright Notice
This presentation in this publication was presented at the tinyML® Summit 2024. The content reflects the

opinion of the author(s) and their respective companies. The inclusion of presentations in this publication
does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

51

