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Background & Motivation
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Biological AI in Non-Neural Organisms
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• Cell-free system based on enzyme reaction of metabolic circuits.

• Offline design using Sensipath and Retropath

        computational tools.

• Binary classification application 

• Single layer ANN using engineered E.coli MC between cells.

• Cells are engineered to receive intercellular diffusing molecules.

• Internally each cell executes a 

       log-sigmoid activation function.

• Offline design of the ANN.

• Perceptron model of an ANN.
• Genetic circuit engineering of E.coli bacteria.
• Logarithmic input-output that fits to the non-linear 

biochemical reactions that occurs in the genetic circuit.
• Weights chemical inputs are established through power-

law functions.
• Offline training.



Gene Regulatory Network
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GRN properties
• Nodes represent genes, while edges represent gene-gene 

interactions.
• The network follows a power-law distribution.
GRN computing properties
• Gene-gene interactions are through Transcriptional Factors (TF)
• Gene regulation contains feedback and feed-forward loops.
• Gene expression rate can reach 2500+ counts/min.

Input Gene 1

Input Gene 2

Gene perceptron

Perceptron model

Similarity between gene expression and functionality of a neuron



GRN TO GENE REGULATORY NEURAL NETWORK (GRNN)

Weight extraction mechanism

1) Identification of GRN-sub networks 
similar to single layer-perceptrons, 
with source and target genes.

2) Pre-process temporal transcriptomic 
data.

3) Extract each gene-gene interaction 
weight following the method 
illustrated in the figure.

4) Repeat this for all the gene-
perceptrons.

GRNN is a computing model resembling ANN, developed by quantifying interaction strengths within the GRN.

Transformation Method



E. Coli GRNN - (CSH50)

• The 450 line is where the predicted and 
experimental expressions are equal.

• Results show that the majority of the 
predictions are close to experimental values.

• Contains 4500+ nodes and 10,000+ 
edges.

• The feedback and feed-forward loops of 
gene expressions results in non-linear 
compuKng.

The diversity of GRNN shows:
• With 100 nodes as inputs, GRNN gives 

networks with a maximum 500 
outputs.

• No. of sub-GRNNs exceeds 5.9 x 10297.
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ANN vs GRNN Application

ANN architecture 
Design

Supervised Data

In-silico full GRNN

Training

Network Architecture 
Search

Trained ANN

Extracted 
Sub-GRNN

1) GRNN is considered a pre-trained random 
structured NN.

2)  Similar to the ANN training phase, GRNN 
computing requires sub-GRNN search.
• Akin to the Network Architecture 

Search

3) Extracted sub-GRNN gives the most 
suitable inputs and output genes to suit 
an application requirement

GRNN Computing



GRNN PLASTICITY FOR COMPUTING

Bacterial cell

GRNN
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Input dependent plasYcity

Temporal Plasticity Input dependent plasticity

GRNN

• Contains redundant paths.
 
• Gene Expressions are highly 

selective.

• Gene Expression pathways 
depend on the inputs.

• Cytoplasm acts as a memory.

Temporal Plasticity

• Input sensitivity leads to 
the expression of a specific 
subset of genes (can be 
from chemical or other 
environmental influence).

• This results in keeping the 
irrelevant genes largely idle.

• Alterations in the influence 
of one gene on another over 
time.

• Optimizes the behavior for a 
given environment.

Cell as a repository of sub-GRNNs

• Gene expressions are highly 
parallel and event-driven.

• Genes exhibit in-memory 
computing.

Neuromorphic properties



TEMPORAL WEIGHT PLASTICITY

• Weight deviation gradually rises to 0.1 between the time period 10-300 and 
60-350 minutes at a gradual pace, before increasing rapidly. 

• Results demonstrate that overtime GRNN update its weights, contributing to 
the cell’s survival as part of its plasticity process.

• 80% of genes within the GRNN display negative correlation, while 20% of the 
total genes exhibit positive correlation. 

• These results show the majority of weights updates over time exhibiting 
temporal plasticity.

Deviation of weight correlation

Correlation of gene expression



GRNN APPLICATION FOR REGRESSION

1) Utilized the E. coli GRNN.

2) Chose Gene b3067 as input, that can directly impact 1702 
output gene-perceptrons.

3) Each box in (a) shows coefficients for 2,875 gene-
perceptrons, highlighting varied quadratic coefficients

4) Selected b1013  as output gene-perceptrons.

5) (b) and (c) illustrate five regression curves and their plots 
for b1013 due to temporal plasticity.

(a) Quadratic, linear coefficients, and intercepts across weight configurations 

(b) Regression coefficients of b1013 (c) Regression curves of b1013

GRNN can be applied to a wide range of computing tasks, such as classification and specially regression.
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Analysis on impact of weight plasLcity on regression diversity
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ENERGY CONSUMPTION

• Max power consumption is <0.05 pW, even 
with the max algorithmic complexity.

• Other platforms register energy usage 
ranging from 109 pW to  1012 pW for models 
with an equivalent number of neurons.

• Due to the high clustering and short path 
lengths, GRNNs have more orderly 
structures, which lowers the structural 
entropy.

• GNNS consume the least power when the 
structural entropy is close to 1. 



ONGOING EXPERIMENTS

Various inputs are computed from the sub-
GRNN, resulting in diverse growth curves.Sub-GRNN associated with cell growth.

Collaborators : 

Prof. Xu Li
Civil & Environmental Engineering,
University of Nebraska

Objectives : 
• Investigate parallel computing 

properties.

• Conduct noise and weight plasticity 
analyses during computing.

Method : 

• Transcriptomic analysis with 
multiple input sets.
• Temporal transcription level-

based cross-talk & information 
theoretical analysis.

Cultured Living Bacteria

Stage 2: 
Chemical injection &

growth medium control
Stage 3: 

Microplate experiment

Stage 1: GRNN 
extraction Exponential 

growth rate

Population 
levels

Wet Lab Experiment Computing reliability analysis



CONCLUSION
Bacterial decision-making

• Despite being non-neuronal organisms, bacterial cells exhibit an incredibly complex decision-making process.

• GRN drives this decision-making process resembling a neural network.

Gene Regulatory Neural Networks (GRNN)

• GRNN reveals the natural computing capabilities of bacteria based on a network of gene expressions.

• GRNN can be considered a repository of pre-trained neural networks, which can be searched to match 
computing applications.

Wet-Neuromorphic computing

• Aim is to use the bio-compaHbility, physical size of chemical neural networks and energy efficiency of bacteria 
for new bio-compuPng.

• Cell plasHcity enhances the compuHng diversity and makes cells suitable for dynamic system compuHng.
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