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The Rise of Large Foundation Models
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Increasing number of stacked up layers .. has increasing generalization ability

triggered the rise of large DNN models

Recent advances in foundation model design and their promising scaling laws have
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The Al Era: and Memory Wall Problem
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Photo Courtesy: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

The memory bandwidth limitation
has intensified the memory wall
problem impacting latency,
throughput, and energy

Rethinking hardware!

With the rise of large model use cases and with the slow down of Moore’s law, the

memory wall problem has intensified
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Compute In Memory (CiM): A Potential Alternative

Von-Neumann Architecture CiM Architecture
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Bottleneck Relaxed bandwidth usage

Compute-in memory alleviates bandwidth and on-chip interconnect limitations faced by

Von Neumann architecture.
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Compute Placement Opportunities i

_Memory System in Package (SIF)
Memory core | 1. Memory devices enable in-situ computation of the data stored in the memory.
&= @ Pro: Opportunity for O(1) MAC computation.
% ¢ Con: Requires complex changes to memory array and high noise sensitivity.
S| —» ||| Memory Array 2. Peripheral circuit is enabled with a compute unit to perform MAC operation.
é - Pro: Compatible with existing memory arrays and corresponding operations.
8 I § Con: Small modifications are needed to peripheral circuits.
. | 3. Compute cores enabled on the same die as that of memory.
o LLCLICLEEE o 3 Pro: Memory core and its operations are unaltered.
bl ke OIS O . g
) Con: Inability to achieve high parallelism as that of position (2).

Compute-in memory with MAC compute performed in peripheral circuits offers more

benefits at a small cost.
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CiM Implementation
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. Hardware based orchestration managing
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data movement and compute, shared
compute resources (e.g., complex
activation functions)

. Memory arrays communicate via multiple levels of

memory decoders.

. Controller orchestrates data movement to (and from)

host, compute, and shared compute resources.

. Host performs upfront offline dataflow optimization for

optimal execution of a DNN layer.
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Affinity of Hardware Configuration: To Model
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DNN architecture i Compute-near memory hardware

search options config search options

Hardware config params have a high affinity subnet arch thus impacting execution

performance.
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Affinity of Hardware Configuration: To Model

Poor compute/byte
I DNN
Link Band Width? FLOPs

_______________________

DNN with largedata T

» Low arithmetic intensity workload requires high bandwidth for better performance.
o Simply offering high bandwidth for execution leads to expensive implementation.

o Also, one must allocate optimal number of cores to achieve better compute utilization.

» Arbitrary choice of hardware config does not guarantee optimal execution.

Due to the high affinity between architecture and config params, joint optimization

IS inevitable.

intel Intel Labs

I



Hardware Design Space Optimization o

DRAM,,, Bandwidth offered by DRAM.

L2y, Bandwidth offered by level 2 decoder in the hierarchy.
L1y, Bandwidth offered by level 1 decoder in the hierarchy.

e Number of level 1 decoders in the hierarchy.
MA,,, Bandwidth offered by memory array.

MApum child Capacity of the memory array.

WA o b Number of memory array nodes in our CiM architecture per L1 decoder.

MA omp_per_core Throughput of a compute core associated with memory array.

Compute-in memory architecture offers a large space of parameters that must be

jointly optimized with subnet architecture.
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CiMNet: Framework Overview
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to perform MAC operations.
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(a) lllustration of the proposed joint architecture-hardware configuration search framework. (b)
Illustration of different possible positions for the placement of a dedicated and specialized compute unit
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CiMNet: Preparing the Predictor Input/ Output

e

» We select a set of model elastic parameters and hardware elastic configurations

» We then one hot-encode each set and concatenate them to create the input set for the predictor training

» We use simple predictor like support vector regressor (SVR) as the predictor
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CiMNet: Predictor Training il

» We use one-hot encoded vectors of the model architecture elastic parameters and hardware elastic
configurations to train accuracy and cycle count predictors.

» We compute true accuracy and true cycle counts via simulation for a small set of sub-networks and
hardware configurations.

» The true accuracies and cycle counts are used to train ridge and support vector regressors to predict
accuracy and cycle count in the combined search space.
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Correlation and Kendall T coefficient between actual and predicted values after training the predictor with 1000 examples. Green lines show the ideal correlation.
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CiMNet: Configuration and Architecture Elasticity
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Hierarchical hardware configuration Model architecture and elasticity
» We select eight elastic hardware configurations Model elastic
architecture
[ parameters
» We select different model elastic parameters for CNNs and Normalized

one-hot input

ardware elastic
configurations

transformers. For CNNs we use kernel size, channel width and :
layer depth, for transformers we use MHSA head numbers, model [
intermediate dim, number of layers as elastic variables.

intel Intel Labs

| | | AEEEEE

I



CiMNet: Iterative Optimization via NSGAII

» We use NSGAIl as the multi-objective optimizer

» During the optimization we leverage the predictor to expedite the accuracy and cycle
evaluations of a large corpus of samples

» At the end of each optimization iteration, we take the top N predicted samples, to
evaluate their corresponding true accuracy and cycles

» Note: We use a cycle accurate simulator to evaluate the CiM hardware cycles

o—@0-@-0

Gradually increasing sample size of the predictor over k optimization iterations
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CiMNet: Evaluating the Predictor

N sl Elastic Arch. Static Arch. Elastic Arch.
Static Config. | Elastic Config. | Elastic Config.
MobileNetV3 0.97 0.97 0.83
ResNet-50 0.95 0.90 0.81
ViT-B 1.00 0.90 0.78

Kendall rank correlation coefficients of different search spaces for sub-networks derived from

MobileNet v3, ResNet50, and ViT-B models show that the predictor has high correlation
coefficient across different search configurations
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CiMNet: Visualizing the Predictor MAPE =
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A well performing predictor can mitigate the need for any pre-calculated set of
hardware metrices like cycles, latency etc.

MAPE of predictors shows the gradual improvement with the increasing training

samples, demonstrating the efficacy of a predictor in predicting accuracy/cycles
for joint optimization framework.
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CiMNet: Pareto Analysis
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With both model and hardware configuration as elastic demonstrates a better pareto optimal curve post

search, this clearly highlights the benefits of proposed joint optimization
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CiMNet: Analyzing the Chosen Configurations

Chosen configuration analysis for an example model: MobileNet v3

Parameter 0.125 X 0.25 X 0.5 X 1.0 X
DRAMpgw Cs Cmax Crnin: Conad
L 1pw Cs, Cmax Cmin, Cmed
Llnum_child Cs Crmins Cmed» Crmax
A IABW Cs Cmcd, Cmax Cmin
JHAC()mp_pcr_corc Crmin, Cmcd» Cmax Cs
A IAmem_size CS’ Cmed’ Cmax Cmin
MA i child Cs, Cmin> Cmed> Cmax
L2pw Cs Cmin, Cmed> Cmax

Hardware configuration that consumes most DRAM and L1 bandwidth results in most cycle efficient

performance for MobileNet v3. This reflects the importance of these configuration variables over others.
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Summary and Future Works =

Summary:

» Jointly optimizing hardware configuration and subnetwork architectures can improve cycle vs accuracy
pareto significantly, evaluated over different model types.

» Predictor based approach works on a dual input settings, where part of the input is subnet one-hot
encoding and remaining is hardware config one hot encoded input.

Future works:
» Extending CiM based architecture in the application space for foundation model inference

» Joint optimization across heterogenous architectures including CiM, Von-Neumann architectures.
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Supplementary on Optimal DNN Mapping on CiM i
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Optimal DNN layer execution requires carefully optimizing spatial and temporal distribution of work

(dataflow).
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