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The Rise of Large Foundation Models
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Recent advances in foundation model design and their promising scaling laws have 
triggered the rise of large DNN models
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The AI Era: and Memory Wall Problem
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With the rise of large model use cases and with the slow down of Moore’s law, the 
memory wall problem has intensified 

Gap
The memory bandwidth limitation
has intensified the  memory wall 
problem impacting latency, 
throughput, and energy

Rethinking hardware!
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Compute In Memory (CiM): A Potential Alternative
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Compute-in memory alleviates bandwidth and on-chip interconnect limitations faced by 
Von Neumann architecture. 
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Compute Placement Opportunities
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1. Memory devices enable in-situ computation of the data stored in the memory.
Pro: Opportunity for O(1) MAC computation.
Con: Requires complex changes to memory array and high noise sensitivity.

2. Peripheral circuit is enabled with a compute unit to perform MAC operation.
Pro: Compatible with existing memory arrays and corresponding operations.
Con: Small modifications are needed to peripheral circuits.

3. Compute cores enabled on the same die as that of memory.
Pro: Memory core and its operations are unaltered.
Con: Inability to achieve high parallelism as that of position (2).

Compute-in memory with MAC compute performed in peripheral circuits offers more 
benefits at a small cost.
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CiM Implementation
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1. Memory arrays communicate via multiple levels of 
memory decoders.

2. Controller orchestrates data movement to (and from) 
host, compute, and shared compute resources. 

3. Host performs upfront offline dataflow optimization for 
optimal execution of a DNN layer.
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Affinity of Hardware Configuration: To Model
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Hardware config params have a high affinity subnet arch thus impacting execution 
performance.
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AGinity of Hardware Configuration: To Model
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Due to the high affinity between architecture and config params, joint optimization 
is inevitable.

Ø Low arithmetic intensity workload requires high bandwidth for better performance.
o Simply offering high bandwidth for execution leads to expensive implementation.
o Also, one must allocate optimal number of cores to achieve better compute utilization.

Ø Arbitrary choice of hardware config does not guarantee optimal execution.
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Hardware Design Space Optimization
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Compute-in memory architecture offers a large space of parameters that must be 
jointly optimized with subnet architecture.

Parameter Description

𝐷𝑅𝐴𝑀!" Bandwidth offered by DRAM.

𝐿2!" Bandwidth offered by level 2 decoder in the hierarchy.

𝐿1!" Bandwidth offered by level 1 decoder in the hierarchy.

𝐿1#$%_'()*+ Number of level 1 decoders in the hierarchy.

𝑀𝐴!" Bandwidth offered by memory array.

𝑀𝐴#$%_'()*+ Capacity of the memory array.

𝑀𝐴%,%_-)., Number of memory array nodes in our CiM architecture per L1 decoder.

𝑀𝐴'/%0_0,1_'/1, Throughput of a compute core associated with memory array.
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CiMNet: Framework Overview
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(a) Illustration of the proposed joint architecture-hardware configuration search framework. (b) 
Illustration of different possible positions for the placement of a dedicated and specialized compute unit 
to perform MAC operations.
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CiMNet: Preparing the Predictor Input/ Output
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Ø We select a set of model elastic parameters and hardware elastic configurations

Ø We then one hot-encode each set and concatenate them to create the input set for the predictor training

Ø We use simple predictor like support vector regressor (SVR) as the predictor

Evaluate 
validation acc.

Evaluate cycles

Ground truth for accuracy predictor

Ground truth for cycles predictor

Predictor
Input
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CiMNet: Predictor Training 
Ø We use one-hot encoded vectors of the model architecture elastic parameters and hardware elastic 

configurations to train accuracy and cycle count predictors.

Ø We compute true accuracy and true cycle counts via simulation for a small set of sub-networks and 
hardware configurations.

Ø The true accuracies and cycle counts are used to train ridge and support vector regressors to predict 
accuracy and cycle count in the combined search space.

MobileNetV3 ResNet-50 ViT-B

Correlation and Kendall 𝜏 coefficient between actual and predicted values after training the predictor with 1000 examples. Green lines show the ideal correlation.
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CiMNet: Configuration and Architecture Elasticity
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Ø We select eight elastic hardware configurations

Ø We select different model elastic parameters for CNNs and 
transformers. For CNNs we use kernel size, channel width and 
layer depth, for transformers we use MHSA head numbers, model 
intermediate dim,  number of layers as elastic variables.

Hierarchical hardware configuration Model architecture and elasticity
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CiMNet: Iterative Optimization via NSGAII
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Ø We use NSGAII as the multi-objective optimizer
Ø During the optimization we leverage the predictor to expedite the accuracy and cycle 

evaluations of a large corpus of samples
Ø At the end of each optimization iteration, we take the top N predicted samples, to 

evaluate their corresponding true accuracy and cycles

Ø Note: We use a cycle accurate simulator to evaluate the CiM hardware cycles

…N 2N 3N kN

Gradually increasing sample size of the predictor over k optimization iterations
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CiMNet: Evaluating the Predictor
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Kendall rank correlation coefficients of different search spaces for sub-networks derived from 
MobileNet v3, ResNet50, and ViT-B models show that the predictor has high correlation 

coefficient across different search configurations
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CiMNet: Visualizing the Predictor MAPE
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MAPE of predictors shows the gradual improvement with the increasing training 
samples, demonstrating the efficacy of a predictor in predicting accuracy/cycles 

for joint optimization framework.

A well performing predictor can mitigate the need for any pre-calculated set of 
hardware metrices like cycles, latency etc.
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CiMNet: Pareto Analysis
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With both model and hardware configuration as elastic demonstrates a better pareto optimal curve post 
search, this clearly highlights the benefits of proposed joint optimization

2.2x 2.6x 1.8x 1.7x
2.1x1.7x



Intel Labs

CiMNet: Analyzing the Chosen Configurations
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Hardware configuration that consumes most DRAM and L1 bandwidth results in most cycle efficient 
performance for MobileNet v3. This reflects the importance of these configuration variables over others.

Chosen configuration analysis for an example model: MobileNet v3
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Summary and Future Works
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Summary:
Ø Jointly optimizing hardware configuration and subnetwork architectures can improve cycle vs accuracy 

pareto significantly, evaluated over different model types.

Ø Predictor based approach works on a dual input settings, where part of the input is subnet one-hot 
encoding and remaining is hardware config one hot encoded input.

Future works:
Ø Extending CiM based architecture in the application space for foundation model inference

Ø Joint optimization across heterogenous architectures including CiM, Von-Neumann architectures.
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Thank You!
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Supplementary on Optimal DNN Mapping on CiM
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Tile for spatial distribution of 
work

Tile for temporal 
distribution of work

Optimal dataflow estimation for a 
layer execution
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Optimal DNN layer execution requires carefully optimizing spatial and temporal distribution of work 
(dataflow).
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