
1

CiMNet: Towards Joint Optimization for DNN
Architecture and Configuration for Compute-In-

Memory Hardware
Souvik Kundu*, Anthony Sarah*, Vinay Joshi#, Om J Omer#, Sree Subramoney#

*Intel Labs, San Diego, USA
#Intel Labs, Bangalore, India

Long talk at TinyML Research Symposium, April 22, 2024

Presenter link Paper link

Intel Labs

The Rise of Large Foundation Models

3

Recent advances in foundation model design and their promising scaling laws have
triggered the rise of large DNN models

Encoder

Encoder

Encoder

MLP

Attention

Photo Courtesy: Scaling for Natural Language Models

Transformer layer

…

Increasing number of stacked up layers .. has increasing generalization ability

Self-attention layer

Intel Labs

The AI Era: and Memory Wall Problem

4

With the rise of large model use cases and with the slow down of Moore’s law, the
memory wall problem has intensified

Gap
The memory bandwidth limitation
has intensified the memory wall
problem impacting latency,
throughput, and energy

Rethinking hardware!

Photo Courtesy: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Intel Labs

Compute In Memory (CiM): A Potential Alternative

5

Bank 1

Bank N

Control
unit

Cache

ALU

Processing unitMemory unit

Bottleneck

Von-Neumann Architecture

Bank 1

Bank N

Control
unit

Cache

ALU

Processing unitMemory unit
CiM Architecture

Relaxed bandwidth usage

Compute-in
memory

Compute-in memory alleviates bandwidth and on-chip interconnect limitations faced by
Von Neumann architecture.

Intel Labs

Compute Placement Opportunities

6

1. Memory devices enable in-situ computation of the data stored in the memory.
Pro: Opportunity for O(1) MAC computation.
Con: Requires complex changes to memory array and high noise sensitivity.

2. Peripheral circuit is enabled with a compute unit to perform MAC operation.
Pro: Compatible with existing memory arrays and corresponding operations.
Con: Small modifications are needed to peripheral circuits.

3. Compute cores enabled on the same die as that of memory.
Pro: Memory core and its operations are unaltered.
Con: Inability to achieve high parallelism as that of position (2).

Compute-in memory with MAC compute performed in peripheral circuits offers more
benefits at a small cost.

Intel Labs

CiM Implementation

7

1. Memory arrays communicate via multiple levels of
memory decoders.

2. Controller orchestrates data movement to (and from)
host, compute, and shared compute resources.

3. Host performs upfront offline dataflow optimization for
optimal execution of a DNN layer.

Intel Labs

Affinity of Hardware Configuration: To Model

8

Hardware config params have a high affinity subnet arch thus impacting execution
performance.

Intel Labs

AGinity of Hardware Configuration: To Model

9

Due to the high affinity between architecture and config params, joint optimization
is inevitable.

Ø Low arithmetic intensity workload requires high bandwidth for better performance.
o Simply offering high bandwidth for execution leads to expensive implementation.
o Also, one must allocate optimal number of cores to achieve better compute utilization.

Ø Arbitrary choice of hardware config does not guarantee optimal execution.

DNN
Data

DNN
FLOPs

DNN with large data

Poor compute/byte

Link Band Width?

MACs/cycle?

Intel Labs

Hardware Design Space Optimization

10

Compute-in memory architecture offers a large space of parameters that must be
jointly optimized with subnet architecture.

Parameter Description

𝐷𝑅𝐴𝑀!" Bandwidth offered by DRAM.

𝐿2!" Bandwidth offered by level 2 decoder in the hierarchy.

𝐿1!" Bandwidth offered by level 1 decoder in the hierarchy.

𝐿1#$%_'()*+ Number of level 1 decoders in the hierarchy.

𝑀𝐴!" Bandwidth offered by memory array.

𝑀𝐴#$%_'()*+ Capacity of the memory array.

𝑀𝐴%,%_-)., Number of memory array nodes in our CiM architecture per L1 decoder.

𝑀𝐴'/%0_0,1_'/1, Throughput of a compute core associated with memory array.

Intel Labs

CiMNet: Framework Overview

11

(a) Illustration of the proposed joint architecture-hardware configuration search framework. (b)
Illustration of different possible positions for the placement of a dedicated and specialized compute unit
to perform MAC operations.

Intel Labs

CiMNet: Preparing the Predictor Input/ Output

12

Ø We select a set of model elastic parameters and hardware elastic configurations

Ø We then one hot-encode each set and concatenate them to create the input set for the predictor training

Ø We use simple predictor like support vector regressor (SVR) as the predictor

Evaluate
validation acc.

Evaluate cycles

Ground truth for accuracy predictor

Ground truth for cycles predictor

Predictor
Input

Intel Labs 13

CiMNet: Predictor Training
Ø We use one-hot encoded vectors of the model architecture elastic parameters and hardware elastic

configurations to train accuracy and cycle count predictors.

Ø We compute true accuracy and true cycle counts via simulation for a small set of sub-networks and
hardware configurations.

Ø The true accuracies and cycle counts are used to train ridge and support vector regressors to predict
accuracy and cycle count in the combined search space.

MobileNetV3 ResNet-50 ViT-B

Correlation and Kendall 𝜏 coefficient between actual and predicted values after training the predictor with 1000 examples. Green lines show the ideal correlation.

Intel Labs

CiMNet: Configuration and Architecture Elasticity

14

Ø We select eight elastic hardware configurations

Ø We select different model elastic parameters for CNNs and
transformers. For CNNs we use kernel size, channel width and
layer depth, for transformers we use MHSA head numbers, model
intermediate dim, number of layers as elastic variables.

Hierarchical hardware configuration Model architecture and elasticity

Intel Labs

CiMNet: Iterative Optimization via NSGAII

15

Ø We use NSGAII as the multi-objective optimizer
Ø During the optimization we leverage the predictor to expedite the accuracy and cycle

evaluations of a large corpus of samples
Ø At the end of each optimization iteration, we take the top N predicted samples, to

evaluate their corresponding true accuracy and cycles

Ø Note: We use a cycle accurate simulator to evaluate the CiM hardware cycles

…N 2N 3N kN

Gradually increasing sample size of the predictor over k optimization iterations

Intel Labs

CiMNet: Evaluating the Predictor

16

Kendall rank correlation coefficients of different search spaces for sub-networks derived from
MobileNet v3, ResNet50, and ViT-B models show that the predictor has high correlation

coefficient across different search configurations

Intel Labs

CiMNet: Visualizing the Predictor MAPE

17

MAPE of predictors shows the gradual improvement with the increasing training
samples, demonstrating the efficacy of a predictor in predicting accuracy/cycles

for joint optimization framework.

A well performing predictor can mitigate the need for any pre-calculated set of
hardware metrices like cycles, latency etc.

Intel Labs

CiMNet: Pareto Analysis

18

With both model and hardware configuration as elastic demonstrates a better pareto optimal curve post
search, this clearly highlights the benefits of proposed joint optimization

2.2x 2.6x 1.8x 1.7x
2.1x1.7x

Intel Labs

CiMNet: Analyzing the Chosen Configurations

19

Hardware configuration that consumes most DRAM and L1 bandwidth results in most cycle efficient
performance for MobileNet v3. This reflects the importance of these configuration variables over others.

Chosen configuration analysis for an example model: MobileNet v3

Intel Labs

Summary and Future Works

20

Summary:
Ø Jointly optimizing hardware configuration and subnetwork architectures can improve cycle vs accuracy

pareto significantly, evaluated over different model types.

Ø Predictor based approach works on a dual input settings, where part of the input is subnet one-hot
encoding and remaining is hardware config one hot encoded input.

Future works:
Ø Extending CiM based architecture in the application space for foundation model inference

Ø Joint optimization across heterogenous architectures including CiM, Von-Neumann architectures.

Intel Labs

Thank You!

21

Paper linkPresenter link

Intel Labs

Supplementary on Optimal DNN Mapping on CiM

22

Tile for spatial distribution of
work

Tile for temporal
distribution of work

Optimal dataflow estimation for a
layer execution

In
pu

t i
m

ag
e

Bl
oc

k 1
Classification layer

3x3, 16, 16

3x3, 16, 16

3x3, 16, 16

3x3, 16, 16

3x3, 16, 16

Ch
an
ne
ls

Width

H
ei
gh
t

Optimal DNN layer execution requires carefully optimizing spatial and temporal distribution of work
(dataflow).

Souvik KUNDUSouvik KUNDU

Copyright Notice

23

This presentation in this publication was presented at the tinyML® Research Symposium 2024. The content
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

