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Challenges in brain-computer interfaces (BCIs) applications
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● Complex brain signals

● Low latency requirement in real-time EEG-based BCIs

* Image credit to “Chang Z, Zhang C, Li C. Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution 
Network. Micromachines. 2022; 13(6):927. https://doi.org/10.3390/mi13060927.”



Motivation
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● Neural networks achieve high accuracy but are expensive in computational cost and have 

high latency, unaffordable for some implantable BCI devices with stringent power constraints

● Classic feature engineering methods (e.g. SVM) exhibits unsatisfactory accuracy

● We need a method that has low latency but also offers satisfactory accuracy



Background: Vector symbolic architecture (VSA)

●  Neural networks are not able to decompose joint representations to obtain distinct 
objects

● Symbolic AI suffers from exhaustive rule searches

● VSA serves as a common language between neural networks and symbolic AI
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Background: Hyper-dimensional computing (HDC/VSA)
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● (Bipolar) High-dimensional vectors

○ From a thousand to tens of 

thousands dimensionality 

● Hardware-efficient operations

○ Element-wise additions and dot 

products

* Image credit to “Nunes, Igor et al. “GraphHD: Efficient graph classification using hyperdimensional computing.” 2022 Design, Automation & 
Test in Europe Conference & Exhibition (DATE) (2022): 1485-1490.”



A possible feasible architecture for real-time lightweight 
BCIs: Low-dimensional computing (LDC) classifier 
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● Problems in HDC

○ Large model size

○ Low accuracy

● Low-dimensional classifier (LDC)

○ Systematic training procedure for 

higher accuracy

○ Low dimensional encodings for 

lightweight model

* Image credit to “Duan, Shijin & Xu, Xiaolin & Ren, Shaolei. (2022). A Brain-Inspired Low-Dimensional Computing Classifier for Inference on 
Tiny Devices.”



Applying LDC to BCIs
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● Problem - low accuracy compared to DNNs

○ Accuracy of LDC classifiers still lags behind the neural networks (e.g. 3-layer MLP 

w/ hidden_size = 50)

● A solution - Knowledge distillation

○ However, large capacity gap between “big” teachers and “small” students can 

result in ineffective knowledge 

■ Intricate patterns and fine-grained data details captured by teachers hard to 

be comprehended by much smaller student architecture

■ Constant distillation level: Lack of adaption throughout the distillation 

process



ScheduledKD-LDC: Scheduling knowledge distillation on 
LDC classifiers
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● Data level -  Curriculum data ordering

○ Allow the student to build data representations step-by-step, from easy to hard 



ScheduledKD-LDC: Scheduling knowledge distillation on 
LDC classifiers
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● Learning procedure -      scheduler to manage distillation level

○ Begin with higher 𝛼 for amplifying teacher's influence

○ Gradually decrease to foster student's independence



ScheduledKD-LDC: Our algorithm



Evaluation Setup

● Evaluation metrics
○ Inference computation efficiency

■ Floating-point multiply-accumulate operations (FPMACs) 
■ Binary multiply-accumulate operations (BMACs) 
■ Model size

○ Accuracy
● Datasets

○ Motor Imagery - Classifying five movements from EEG signals
○ X11 and S4b - Classifying hand movements from EEG signals
○ ERN - A P300 speller task
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Key results
● ScheduledKD-LDC has achieved a good balance between accuracy and efficiency
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Key results
● ScheduledKD-LDC has achieved a good balance between accuracy and efficiency
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Ablation studies: Analysis of the    scheduler
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● Using an     scheduler is more effective than a static
● Exponential     scheduler performs slightly better than the linear one  
● Parameterized     has the lowest accuracy 



Ablation studies: Efficacy of curriculum data order
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● Curriculum helps in the knowledge distillation setting
● Anti-curriculum (from hard-to-easy) adversely affects accuracy  
● Curriculum does not help if not under the knowledge distillation setting



Ablation studies: Efficacy of curriculum data order

● Using teacher model’s loss to order data results in worse accuracy than using the 
student model’s loss

● Student and teacher model have different perception on the hardness of data points
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Summary & Takeaways

● ScheduledKD-LDC strikes a good balance 
between inference accuracy and 
efficiency for BCI applications

●      scheduler manages distillation level to 
allow the students to comprehend 
knowledge from the teacher

● The curriculum data order helps small 
student models to build their own data 
representation gradually
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