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Paul Palomero Bernardo

Paul Palomero Bernardo was born in Tübingen, 
Germany, 1996. He received the B.S. and M.S. 
degrees in computer science from University of 
Tübingen, Tübingen, Germany, in 2017 and 
2020, respectively, where he is currently 
pursuing the doctoral degree (Ph.D.) at the 
Department of Computer Science. His current 
research interests include neural network 
hardware and design optimization.
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Structure

• ML accelerator UltraTrail

- Architecture

- Deployment

- Results

- SoC platform integration

• Hardware architecture and neural network search (HANNAH)

- Framework overview

- Search algorithm

- Results

• Automatic hardware generation

- Motivation

- TVM-based hardware generation
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UltraTrail – Overview

1 Paul Palomero Bernardo, Christoph Gerum, Adrian Frischknecht, Konstantin Lübeck, Oliver Bringmann: "UltraTrail: A Configurable Ultralow-Power TC-ResNet AI Accelerator

for Efficient Keyword Spotting", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39.11 (2020): 4240-4251.

UltraTrail: A Configurable Ultralow-Power TC-ResNet AI Accelerator1

• Architecture:

- ASIC accelerator for DNN inference

- Scalable design for application-specific adaptability

• Target DNN architecture:

- Temporal convolutional neural network (TC-ResNet)

- 1-dimensional convolution along the temporal dimension

• Use-cases:

- Near-sensor signal processing

- Keyword spotting, wakeword detection, voice activity detection
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UltraTrail – Architecture
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UltraTrail – Deployment

UltraTrail provides a custom backend for configuration and deployment

• Custom backend:

- Manages data layout transformation

- Generates fitting memory macros

- Generates SystemVerilog parameters for design configuration

- Provides hardware models for power, performance, and area

• Wrapper interface for PULP-based SoCs:

- Hardware Processing Engine (HWPE) interface protocol

- Manages off-chip memory access and accelerator configuration

- Manages clock and power gating of the accelerator

- Support for clock domain crossing

Training Framework

Custom Backend

UltraTrail

▪ DNN

▪ Configuration

▪ SV Parameters

▪ Memories

▪ C-Headers

HW Metrics
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UltraTrail – Results

• Evaluation on the task of real-time keyword spotting

• DNN architecture:

- TC-ResNet

- 64k parameters, 1.5M MACs

- 6 bit weights, 8 bit features

• Requirements:

- Always-on → optimize for low power consumption

- Real-time → 10 inferences per second

• Methodology:

- Results are based on post-layout simulations of 20 consecutive inferences

- Evaluated for the 22 nm technology 22FDX at typical operation conditions (25°C TT)
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UltraTrail – Results
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Tübingen Edge Computing AI Platform T-Rax

• Low-power edge computing platform for 

intelligent sensor signal processing

• SoC platform T-Rax (based on PULPissimo)

- Chip in 22FDX, RTL and VP available

- Tape-out: 1.56 mm², 200 MHz @ 0.8V, 7.5 mW

• RISC-V CPU core

- RV32IMC

- Used for booting and accelerator setup

• Customizable AI accelerator UltraTrail

- Configurable neural network execution

- 2x2 UltraTrail for voice activity detection (~500 nW)

- 8x8 UltraTrail for keyword spotting (8.2 μW)

- Hierarchical wakeup mechanism
RISC-V core
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HANNAH – Overview

HANNAH – Train
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HANNAH – Optimize (Neural Architecture Search)
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HANNAH – Search
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● size = 1
● padding = true
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● activation = true
● parallel = true
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HANNAH – Results

• KWS: Keyword Detection on Google Speech Commands

• VAD: Voice Activity Detection on UWNU/TUT

• WWD: WakeWord Detection on Hey Snips!

→ Search Time: ~ 2 days @4 GPUs
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HANNAH – Results

Design Area DNN Structure
Word Width

(Weights)

Word Width

(Features)
MAC Array Size Accuracy Power

Manual 0.20 mm² TC-ResNet 6 8 8×8 93.09 % 8.20 µW

HANNAH High Accuracy 0.13 mm² TC-ResNet 6 6 8×8 94.33 % 6.38 µW

HANNAH Low Power 0.09 mm² CONV+FC 6 6 6×6 93.37 % 3.79 µW

• 1.24 pp increase in accuracy

• Over 2x reduction in power
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Automatic Hardware Generation

Current State

• No continuous design flow

• Separate optimization

AcceleratorDNN Deployment

Manual 

integration
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Automatic Hardware Generation

Current State Goal

• No continuous design flow

• Separate optimization

• End-to-end hardware generation

• Joint optimization

DNN Deployment Accelerator
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DNN

• Network topology

• Training

• Quantization

• Pruning

TVM-based Hardware Generation

OPTIMIZATION

Accelerator

• RTL

• Hardware models

• Driver

Deployment

• Mixed deployment (BYOC)

• Hardware abstraction

• Memory planning

• Code generation
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TVM-based Hardware Generation
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TVM-based Hardware Generation

for g1=0:1 do
for k1=0:12 do

for x1=0:12 do
for c1=0:8 do

for f_x1=0:9 do
o[24∙k1+x1]    += i[40∙c1+x1+f_x1]    ∙ w[288∙k1+18∙c1+f_x1]
o[24∙k1+x1]    += i[40∙c1+x1+f_x1+20] ∙ w[288∙k1+18∙c1+f_x1+9]
o[24∙k1+x1+12] += i[40∙c1+x1+f_x1]    ∙ w[288∙k1+18∙c1+f_x1+144]
o[24∙k1+x1+12] += i[40∙c1+x1+f_x1+20] ∙ w[288∙k1+18∙c1+f_x1+153]

To hardware graph
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Hardware

loop control
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multiplier
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load / store• Use templates for memories and functional units

• Use code generation for interconnects
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Conclusion

• Summary:

- Scalable ML accelerator UltraTrail for extreme-edge applications

- Joint hardware/software co-design using HANNAH

• Challenges:

- Manual design and extension of ML accelerators is very time consuming and requires

expert knowledge

- Changes to the hardware also translate to the deployment and training process

• Solutions:

- End-to-end design flow including training, deployment, and hardware generation

- Global optimization over joint search space
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