
“A Practical Guide to Neural Network Quantization”

Marios Fournarakis - Qualcomm AI Research

September 28, 2021

tinyML Talks Sponsors and Strategic Partners

Additional Sponsorships available – contact Olga@tinyML.org for info

tinyML Strategic Partner tinyML Strategic Partner

tinyML Strategic Partner tinyML Strategic Partner tinyML Strategic Partner

tinyML Strategic Partner tinyML Strategic PartnertinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic PartnertinyML Strategic PartnertinyML Strategic Partner

mailto:Bette@tinyML.org

Distributed infrastructure for TinyML apps
Decoupling intelligence

HOTG is building the distributed infrastructure to pave the way
for AI enabled edge applications

Develop at warp speed Device orchestrationAutomate deployments

Silicon

Software Data

Neural Decision Processors
• At-Memory Compute
• Sustained High MAC Utilization
• Native Neural Network

Processing

ML Training Pipeline
• Enables Production Quality

Deep Learning Deployments

Data Platform

• Reduces Data Collection
Time and Cost

• Increases Model
Performance

End-to-End
Deep Learning

Solutions

for

TinyML & Edge AI

partners@syntiant.com www.syntiant.com

mailto:partners@syntiant.com
http://www.syntiant.com/

LIVE ONLINE November 2-5, 2021
(9-11:30 am China Standard time)

https://www.tinyml.org/event/asia-2021/

Free event courtesy of our sponsors and strategic partners

Register today!
Technical Programm Committee

ASIA

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/asia-2021/
mailto:sponsorships@tinyML.org

Submissions accepted until September 17th, 2021
Winners announced on October 5th, 2021 ($6k value)

Sponsorships available: sponsorships@tinyML.org
https://www.hackster.io/contests/tinyml-vision

collaboration with

Focus on:
(i) developing new use cases/apps for tinyML vision; and (ii) promoting tinyML tech & companies in the developer community

Open now

Next tinyML Talks
Date Presenter Topic / Title
Tuesday,
October 5

Alessio Lomuscio,
Professor, Imperial College of London

Verification of ML-based AI systems and its
applicability in Edge ML

Webcast start time is 8 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org

Reminders

youtube.com/tinyml

Slides & Videos will be posted tomorrow

tinyml.org/forums

Please use the Q&A window for your questions

Marios Fournarakis

Marios Fournarakis is a Deep Learning Researcher at
Qualcomm AI Research in Amsterdam, working on power-
efficient training and inference of neural networks, focusing
on quantization techniques and compute-in-memory. He is
also interested in low-power AI applications and equivariant
neural networks. He completed his graduate work in
Machine Learning at University College London and holds a
Master’s in Engineering from the University of Cambridge.
Prior to Qualcomm, he worked as a Computer Vision
research intern at Niantic Labs in London on ML-based video
anonymization, and at Arup as a structural engineering
consultant.

Marios Fournarakis

28th September 2021 mfournar@qualcomm.com

A Practical Guide to
Neural Network
Quantization

Engineer, Senior
Qualcomm Technologies Netherlands B.V.

9

• Energy-efficient machine learning and the need for
quantization

• Introduction to neural network quantization

• Simulating quantization in neural networks

• Post-training quantization (PTQ)

•Quantization-aware training (QAT)

• AI Model Efficiency Toolkit (AIMET)*

Overview

*AIMET is a product of Qualcomm Innovation Center, Inc

1010

Increasingly large and complex neural networks for Natural Language
Processing, Image and Video Processing2025

W
ei

gh
t p

ar
am

et
er

 c
ou

nt

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

1943: First NN (+/- N=10)

1988:
NetTalk
(+/- N=20K)

2009: Hinton’s Deep
Belief Net (+/- N=10M)

2013: Google/Y!
(N=+/- 1B)

2025:
N = 100T = 1014

2017: Very large neural
networks (N = 137B)

1012

1010

108

106

1014

104

102

100

Deep neural networks
are energy hungry
and growing fast
AI is being powered by the explosive
growth of deep neural networks

2021: Extremely
large neural
networks (N = 1.6T)

11

The AI power and thermal ceiling

The challenge
of AI workloads

Very compute intensive

Complex concurrencies

Real-time

Always-on

Constrained
mobile environment

Must be thermally efficient
for sleek, ultra-light designs

Requires long battery
life for all-day use

Storage/memory
bandwidth limitations

12

New
input
data

Advancing AI research to increase power efficiency

Trained neural network model

Compute
operations
• Vector and matrix

manipulations

• CPU, GPU, DSP,
and AI accelerationMove data between

memory and compute
• Move pieces of input data and AI

model from memory to compute

• Send partial results back to memory

Inference
output

13

Trained neural network model

Inference
output

New
input data

Hardware
awareness

AI Acceleration
(scalar, vector, tensor)

Acceleration research
Such as compute-in-memory

Advancing AI research to increase power efficiency

QuantizationCompression Compilation
Learning to reduce bit-precision
while keeping desired accuracy

Learning to prune model while
keeping desired accuracy

Learning to compile AI models for
efficient hardware execution

Applying AI to optimize AI model through automated techniques

1414

Our white paper on neural network quantization

Markus Nagel
Qualcomm Technologies

Netherlands B.V.

Marios Fournarakis
Qualcomm Technologies

Netherlands B.V.

Rana Ali Amjad

Mart van Baalen
Qualcomm Technologies

Netherlands B.V.

Tijmen Blankevoort
Qualcomm Technologies

Netherlands B.V.

Yelysei Bondarenko
Qualcomm Technologies

Netherlands B.V.

What is neural
network
quantization?

16TinyML Events: A Practical Guide to Neural Network Quantization

What is neural network quantization?

For any given trained neural network:

• Store weights in low bits (INT8)

• Compute calculations in low bits

Quantization Analogy

Use fewer bits to represent each pixel in an
image

17Source: Mark Horowitz (Stanford). Energy based on ASIC | Area based on TSMC45nm

Quantizing AI models offers significant benefits

Power consumption

Significant reduction in
energy for both computations

and memory access

Silicon area

Integer math or less bits require
less silicon area compared to

floating point math and more bits

Mem access
energy (pJ)

Cache (64-bit)

8KB 10

32KB 20

1MB 100

DRAM
1300-
2600

Up to 4X energy
reduction

Add energy (pJ)

INT8 FP32

0.03 0.9

30X energy
reduction

Mult energy (pJ)

INT8 FP32

0.2 3.7

18.5X energy
reduction

Memory usage

8-bit versus 32-bit weights
and activations stored in

memory

01010101 01010101 01010101 01010101

01010101

Add area (µm2)

INT8 FP32

36 4184

116X area reduction

Mult area (µm2)

INT8 FP32

282 7700

27X area reduction

Latency

With less memory access
and simpler computations,

latency can be reduced

1818

How to most efficiently calculate 𝑊𝑋 + 𝑏?

Matrix operations are the backbone of neural networks
A running example to showcase how to make these operations more efficient

𝑾 =
0.97 0.64
0.58 0.84

0.74 1.00
0.84 0.81

0.00 0.18
0.57 0.96

0.90 0.28
0.80 0.81

𝒃 =
0.1
0.2
0.3
0.4

𝑿 =
0.41 0.25
0.00 0.41

0.73 0.66
0.41 0.57

0.42 0.24
0.39 0.82

0.71 1.00
0.17 0.35

19TinyML Events: A Practical Guide to Neural Network Quantization

A schematic MAC array for efficient computation

The array efficiently calculates the dot
product between multiple vectors

W!,! W!,# W!,$ W!,%

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

Input values

W
ei

gh
t v

al
ue

s A
ccum

ulators

W#,! W#,# W#,$ W#,%

W$,! W$,# W$,$ W$,%

W%,! W%,# W%,$ W%,%

𝐴& =&
'

𝐶&,' + 𝒃&

𝐴& = 𝑊& ⋅ 𝐼! +𝑊& ⋅ 𝐼# +𝑊& ⋅ 𝐼$ +𝑊& ⋅ 𝐼%

20

𝑂𝑢𝑡 =
1.11 1.52
0.92 1.38

1.70 2.1
1.53 2.0

0.50 0.54
0.90 1.41

0.79 1.11
1.55 2.02

𝑿 =
0.41 0.25
0.00 0.41

0.73 0.66
0.41 0.57

0.42 0.24
0.39 0.82

0.71 1.00
0.17 0.35

TinyML Events: A Practical Guide to Neural Network Quantization

Step-by-step matrix multiplication in MAC array

𝑊!,:

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

𝑊#,:

𝑊$,:

𝑊%,:

𝑾 =
0.97 0.64
0.58 0.84

0.74 1.00
0.84 0.81

0.00 0.18
0.57 0.96

0.90 0.28
0.80 0.81

Load matrix 𝑾 into
MAC array

𝒃 =
0.01
0.02
0.03
0.01

Load the accumulators
with biases

21TinyML Events: A Practical Guide to Neural Network Quantization

Quantization comes at a cost of lost precision

• We can approximate an FP tensor with an integer tensor multiplied by a scale-factor, 𝑠3:

𝑾 =
0.97 0.64
0.58 0.84

0.74 1.00
0.84 0.81

0.00 0.18
0.57 0.96

0.90 0.28
0.80 0.81

≈ !
"##

247 163
148 214

189 255
214 207

0 46
145 245

229 71
204 207

= 𝑠$ 𝑾%&'()

𝝐 = 𝑾− 𝑠) 𝑾*+, =
1
255

0.35 0.20
−0.1 0.20

−0.3 0
0.20 −0.45

0.00 −0.1
0.35 −0.2

−0.5 0.40
0 −0.45

• Quantization is not free:

FP32 tensor
𝑿 ≈ 𝑠- 𝑿*+, = 8𝑿

scaled quantized tensor

22

Different types of quantization have pros and cons
Symmetric, asymmetric, signed, and unsigned quantization

Fixed point grid

Floating point grid

𝑠: scale factor

𝑧: zero-point

<latexit sha1_base64="LAN1Fz9JJpBsYhcuRNmqr7w7Hzc=">AAACCHicbVDLSsNAFJ34rPVVdenCwSK4Kkkp2mXBjcsK9gFNCJPJpB06eTBzIy0hSzf+ihsXirj1E9z5N07bLLT1wMDhnHuZe46XCK7ANL+NtfWNza3t0k55d2//4LBydNxVcSop69BYxLLvEcUEj1gHOAjWTyQjoSdYzxvfzPzeA5OKx9E9TBPmhGQY8YBTAlpyK2fKpn4M2A4JjLwgm+RuZgObQMYjaOa5W6maNXMOvEqsglRRgbZb+bL9mKYhi4AKotTAMhNwMiKBU8Hysp0qlhA6JkM20DQiIVNONg+S4wut+DiIpX4R4Ln6eyMjoVLT0NOTs3vVsjcT//MGKQRNR0dKUmARXXwUpAJDjGetYJ9LRkFMNSFUcn0rpiMiCQXdXVmXYC1HXiXdes26qtXvGtVWo6ijhE7RObpEFrpGLXSL2qiDKHpEz+gVvRlPxovxbnwsRteMYucE/YHx+QMcwpqk</latexit>s · xint8
<latexit sha1_base64="wQVDMLDEUIqvtUS9drDQVQOpZco=">AAACCXicbVDLSsNAFJ3UV62vqks3g0VwVZJStMuCG5cV7AOaEiaTSTt0MgkzN9ISsnXjr7hxoYhb/8Cdf+P0sdDWAxcO59zLvff4ieAabPvbKmxsbm3vFHdLe/sHh0fl45OOjlNFWZvGIlY9n2gmuGRt4CBYL1GMRL5gXX98M/O7D0xpHst7mCZsEJGh5CGnBIzklbF2aRADdiMCIz/MJrmXucAmkKVcQiPPvXLFrtpz4HXiLEkFLdHyyl9uENM0YhKoIFr3HTuBQUYUcCpYXnJTzRJCx2TI+oZKEjE9yOaf5PjCKAEOY2VKAp6rvycyEmk9jXzTOTtYr3oz8T+vn0LYGGRcJikwSReLwlRgiPEsFhxwxSiIqSGEKm5uxXREFKFgwiuZEJzVl9dJp1Z1rqq1u3qlWV/GUURn6BxdIgddoya6RS3URhQ9omf0it6sJ+vFerc+Fq0Fazlziv7A+vwBAG+bIw==</latexit>s · xuint8

0<latexit sha1_base64="KWF1WsL3Cx0f3yYpGDxUvz20H+g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3LmM8A==</latexit>s

0 <latexit sha1_base64="KWF1WsL3Cx0f3yYpGDxUvz20H+g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3LmM8A==</latexit>s0 <latexit sha1_base64="KWF1WsL3Cx0f3yYpGDxUvz20H+g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3LmM8A==</latexit>s
0

127-128

0

255

0 255

<latexit sha1_base64="usQ8n/DwTDCgaXu4jV5+gU9AQfU=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GIhWE3BE0ZsLGMYB6QhDA7mU2GzM4uM3clcdnWxl+xsVDE1j+w82+cPApNPHDhcM693HuPFwmuwXG+rcza+sbmVnY7t7O7t39gHx41dBgryuo0FKFqeUQzwSWrAwfBWpFiJPAEa3qj66nfvGdK81DewSRi3YAMJPc5JWCkno01LnQCAkPPT8ZpL+kAG0MScwmVNMUXD+c9O+8UnRnwKnEXJI8WqPXsr04/pHHAJFBBtG67TgTdhCjgVLA014k1iwgdkQFrGypJwHQ3mX2S4jOj9LEfKlMS8Ez9PZGQQOtJ4JnO6dF62ZuK/3ntGPxKN+EyioFJOl/kxwJDiKex4D5XjIKYGEKo4uZWTIdEEQomvJwJwV1+eZU0SkX3sli6Leer5UUcWXSCTlEBuegKVdENqqE6ougRPaNX9GY9WS/Wu/Uxb81Yi5lj9AfW5w+QIZo1</latexit>

s(xuint8 � z)

Symmetric unsignedSymmetric signed

Asymmetric

−𝑠𝑧

23TinyML Events: A Practical Guide to Neural Network Quantization

Quantized inference using symmetric quantization

𝑊!,:

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

𝑊#,:

𝑊$,:

𝑊%,:

6𝑾 =
1
255

247 163
148 214

189 255
214 207

0 46
145 245

229 71
204 207

UINT8

UINT8

7𝒃 =
1

255!

650
1300
1951
650

INT32

INT16

𝑂𝑢𝑡 =
72053 99047
59581 89559

110182 136671
99584 129537

32289 34999
58196 92012

51464 72289
100471 130978

7𝑿 =
1
255

105 64
0 105

186 168
105 145

107 61
99 209

181 255
43 89

INT32

24TinyML Events: A Practical Guide to Neural Network Quantization

Quantized inference using symmetric quantization

𝑊!,:

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

𝑊#,:

𝑊$,:

𝑊%,:

6𝑾 =
1
255

247 163
148 214

189 255
214 207

0 46
145 245

229 71
204 207

UINT8

UINT8

7𝒃 =
1

255!

650
1300
1951
650

INT32

INT16

𝑂𝑢𝑡 =
72053 99047
59581 89559

110182 136671
99584 129537

32289 34999
58196 92012

51464 72289
100471 130978

7𝑿 =
1
255

105 64
0 105

186 168
105 145

107 61
99 209

181 255
43 89

INT32

INT32

25TinyML Events: A Practical Guide to Neural Network Quantization

Quantized inference using symmetric quantization

𝑊!,:

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

𝑊#,:

𝑊$,:

𝑊%,:

6𝑾 =
1
255

247 163
148 214

189 255
214 207

0 46
145 245

229 71
204 207

UINT8

UINT8

7𝒃 =
1

255!

650
1300
1951
650

INT32

INT16

𝑂𝑢𝑡 =
72053 99047
59581 89559

110182 136671
99584 129537

32289 34999
58196 92012

51464 72289
100471 130978

1
255 ⋅ 255

7𝑿 =
1
255

105 64
0 105

186 168
105 145

107 61
99 209

181 255
43 89

INT32

INT32

26

6𝑂𝑢𝑡 =
1

136671 ⋅ 255

134 185
111 167

206 255
186 242

60 65
109 172

96 134
187 244

TinyML Events: A Practical Guide to Neural Network Quantization

Quantized inference using symmetric quantization

𝑊!,:

𝐼! 𝐼# 𝐼$ 𝐼%

𝐶!,! 𝐶!,# 𝐶!,$ 𝐶!,%

𝐶#,! 𝐶#,# 𝐶#,$ 𝐶#,%

𝐶$,! 𝐶$,# 𝐶$,$ 𝐶$,%

𝐶%,! 𝐶%,# 𝐶%,$ 𝐶%,%

𝐴!

𝐴#

𝐴$

𝐴%

𝑊#,:

𝑊$,:

𝑊%,:

6𝑾 =
1
255

247 163
148 214

189 255
214 207

0 46
145 245

229 71
204 207

UINT8

UINT8

7𝒃 =
1

255!

650
1300
1951
650

INT32

INT16

𝑂𝑢𝑡 =
72053 99047
59581 89559

110182 136671
99584 129537

32289 34999
58196 92012

51464 72289
100471 130978

1
255 ⋅ 255 UINT8 Activation

quantization

7𝑿 =
1
255

105 64
0 105

186 168
105 145

107 61
99 209

181 255
43 89

INT32

INT32

2727

Symmetric weights and asymmetric activations more hardware efficient

What type of quantization should you use?

Symmetric quantization

𝑾𝑿 ≈ 𝑠$ 𝑾&'(𝑠* 𝑿&'(

Asymmetric quantization

𝑾𝑿 ≈ 𝑠$ 𝑾&'(− 𝑧$ 𝑠* 𝑋&'(− 𝑧*
= + +

𝑾 : weight matrix

𝑿 : input of a layer

Same calculation

Asymmetric weight quantization is equivalent to adding an input channel

𝑠$𝑠*𝑧$𝑿&'(𝑠$𝑠*𝑧*𝑾&'(+ 𝑠$𝑧$𝑠*𝑧*𝑠$𝑠* 𝑾&'(𝑿&'(𝑠$𝑠* 𝑾&'(𝑿&'(= 𝑠$𝑠* 𝑾&'(𝑿&'(𝑠$𝑠* 𝑾&'(𝑿&'(𝑠$𝑠*𝑧*𝑾&'(+ 𝑠$𝑧$𝑠*𝑧* 𝑠$𝑠*𝑧$𝑿&'(

Data-dependent
overhead

Precompute, add to
layer bias

Simulating
quantization

29TinyML Events: A Practical Guide to Neural Network Quantization

Why simulate quantization?

• We simulate fixed-point operations with
floating-point numbers using general purpose
hardware (e.g. CPU, GPU)

• This simulation is achieved by introducing
simulated quantization operations (quantizers)
to the compute graph.

• Quantization simulation benefits:
• Enables GPUs acceleration
• No need for dedicated kernels
• Test various quantization option and bit-widths

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+

30TinyML Events: A Practical Guide to Neural Network Quantization

MAC Array

WeightsInput

Biases

Output

int32

int8

Accumulator

int32

Requantization

Activation

int8

int8

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

Output

+

On-device fixed-point inference Simulated quantized inference

FP32FP32

FP32

FP32

int32

31TinyML Events: A Practical Guide to Neural Network Quantization

What operations do the quantizer perform?

Assuming asymmetric quantization the
quantization operation applied to input tensor 𝑿:

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+

𝑾

6𝑾

7𝑿

7𝒀

𝒀

𝑠𝑾

𝑧𝑾

𝑠𝑿

𝑧𝑿
𝑿&'(= clip round

𝑿
𝑠
+ 𝑧,min = 0,max = 2+ − 1

8𝑿 = 𝑠 (𝑿*+, − 𝑧)

𝑋 = 0.41 0.0
0.8 −0.5

𝑠 =
1
15 = 0.067

Example using 𝑏 = 4:

𝑧 = round
0.5
0.067 = 8

32TinyML Events: A Practical Guide to Neural Network Quantization

What operations do the quantizer perform?

Assuming asymmetric quantization the
quantization operation applied to input tensor 𝑿:

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+

𝑾

6𝑾

7𝑿

7𝒀

𝒀

𝑠𝑾

𝑧𝑾

𝑠𝑿

𝑧𝑿
𝑿&'(= clip round

𝑿
𝑠
+ 𝑧,min = 0,max = 2+ − 1

8𝑿 = 𝑠 (𝑿*+, − 𝑧)

𝑠 = 0.067Example using 𝑏 = 4: 𝑧 = 8

𝑋
𝑠 =

6.15 0.0
12 −7.5

round
𝑋
𝑠 + 𝑧 = 14 8

20 0

33TinyML Events: A Practical Guide to Neural Network Quantization

What operations do the quantizer perform?

Assuming asymmetric quantization the
quantization operation applied to input tensor 𝑿:

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+

𝑾

6𝑾

7𝑿

7𝒀

𝒀

𝑠𝑾

𝑧𝑾

𝑠𝑿

𝑧𝑿
𝑿&'(= clip round

𝑿
𝑠
+ 𝑧,min = 0,max = 2+ − 1

8𝑿 = 𝑠 (𝑿*+, − 𝑧)

𝑠 = 0.067Example using 𝑏 = 4: 𝑧 = 8

round
𝑋
𝑠 + 𝑧 = 14 8

20 0

14 8
𝟏𝟓 0

round
𝑋
𝑠
+ 𝑧 = 14 8

20 0
clip

de-quantize

D𝑋 = 0.4 0.0
0.47 −0.53𝑋 = 0.41 0.0

0.8 −0.5

34TinyML Events: A Practical Guide to Neural Network Quantization

Per-channel vs Per-tensor quantization of weights

• Per-tensor quantization most
supported by fixed-point
accelerators

• Per-channel quantization better
utilizes the quantization grid

• Per-channel quantization
increasingly popular for weights

• Check for HW support

Weight output channels

D
yn

am
ic

 R
ag

e

Schematic histogram of weight ranges for layer

0

50

100

1 2 3
min

maxmax

4

per-tensorper-channel

35TinyML Events: A Practical Guide to Neural Network Quantization

How to simulate quantization in common DL layers

Max-pool

7𝑿

Quantizer

Average
Pooling

Quantizer

7𝑿

We can tie input
and output
quantizers

Concatenate

Quantizer

7𝑿" 7𝑿#7𝑿! …

+

Quantizer

7𝑿 7𝒀

Elementwise Add

Choosing the
quantization
parameters

37TinyML Events: A Practical Guide to Neural Network Quantization

Sources of quantization error

𝑞,-.𝑞,&'

𝑧

0rounding error

𝜖$%&'(∈ −
𝑠
2
,
𝑠
2

clipping error
𝜖01*2

𝜖?@ABC = (
DACA

𝜖EF@BD + 𝜖GHIJ

𝜖FGHIJ 𝜖KLMN

𝑥
0

𝑥&'(

G𝑥
−𝑠𝑧

clip round 3
4
+ 𝑧, 0, 25 − 1

𝑠(𝑥*+, − z)

0 2) − 1

𝑠 =
𝑞*+, − 𝑞-./
2) − 1

38TinyML Events: A Practical Guide to Neural Network Quantization

Sources of quantization error

𝑞,-.𝑞,&'

𝑧

0rounding error

𝜖$%&'(∈ −
𝑠
2
,
𝑠
2

clipping error
𝜖01*2

𝑥
0

𝑥&'(

G𝑥
−𝑠𝑧

𝜖FGHIJ 𝜖KLMN

𝜖?@ABC = (
DACA

𝜖EF@BD + 𝜖GHIJ

0 2) − 1

clip round 3
4
+ 𝑧, 0, 25 − 1

𝑠(𝑥*+, − z)

𝑠 =
𝑞*+, − 𝑞-./
2) − 1

39TinyML Events: A Practical Guide to Neural Network Quantization

Quantization range setting methods

• Min-max range:
𝑞VWX = min 𝑿
𝑞VYZ = max 𝑿

• Optimization-based methods:

argmin[%&',[%() ℓ 𝑿 , .𝑿 𝑞VWX, 𝑞VYZ

• Batch-Norm Based [1]:
𝑞VWX = min (𝜷 − 𝛼𝜸)
𝑞VYZ = max (𝜷 + 𝛼𝜸)

BatchNorm 𝒛/
= 𝜸/

𝒛/ − 𝝁/
𝝈/ + 𝜖

+ 𝜷/

[1] Nagel et al, 2019, Data-Free Quantization Through Weight Equalization and Bias Correction

Cross-entropy MSE

40TinyML Events: A Practical Guide to Neural Network Quantization

Quantization setting methods ablation study

Model (FP32 Accuracy) ResNet18 (69.68) MobileNetV2 (71.72)

Bit-width A8 A6 A8 A6

Min-Max 69.60 68.19 70.96 64.58

MSE 69.59 67.84 71.35 67.55

MSE & X-entropy 69.60 68.91 71.36 68.85

BN (𝛼 = 6) 69.54 68.73 71.32 71.32
Average ImageNet validation accuracy (%) over 5 seeds

4141

What algorithm to choose to improve accuracy?

Source sample text

ü Takes a pre-trained network and converts
it to a fixed-point network without access
to the training pipeline

ü Data-free or small calibration set needed

ü Use though single API call

✕ Lower accuracy at lower bit-widths

Quantization-Aware Training
(QAT)

Post-Training Quantization
(PTQ)

✕ Requires access to training pipeline and
labelled data

✕ Longer training times

✕ Hyper-parameter tuning

✓ Achieves higher accuracy

Post-training
quantization

43TinyML Events: A Practical Guide to Neural Network Quantization

Post-training quantization pipeline

Pre-trained
FP Model

Add
Quantizers

CLE
Weight
Range
Setting

Yes

No

Use
Data

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

MSE Range
Setting

Bias
Correction

AdaRound

Activation
Range
Setting

BN Based
Range Setting

Use Data

No Data

44TinyML Events: A Practical Guide to Neural Network Quantization

CLE Cross-Layer Equalization

Nagel et al, 2019, Data-Free Quantization Through Weight Equalization and Bias Correction

45TinyML Events: A Practical Guide to Neural Network Quantization

Imbalanced weights is a common problem in practice

Distributions of weights in 2nd layer of
MobileNetV2 (ImageNet)

46TinyML Events: A Practical Guide to Neural Network Quantization

Cross-layer equalization scales weights in neighboring
layers for better quantization

ReLU 𝑥 = max 0, 𝑥
We can scale two neighboring layers
together to optimize it for quantization

<latexit sha1_base64="meYEYs0luY9YGmCX9DxDNv5g0Cs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRF1GXRjcsK9gFtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucv9zpRKxSLxqGcx9UI8EixgBGsjDWy7H2I99oO0kz2lVfciG9gVp+bMgVaJW5AKFGgO7K/+MCJJSIUmHCvVc51YeymWmhFOs3I/UTTGZIJHtGeowCFVXjpPnqFzowxREEnzhEZz9fdGikOlZqFvJvOcatnLxf+8XqKDGy9lIk40FWRxKEg40hHKa0BDJinRfGYIJpKZrIiMscREm7LKpgR3+curpF2vuVe1+sNlpXFb1FGCUziDKrhwDQ24hya0gMAUnuEV3qzUerHerY/F6JpV7JzAH1ifPwwyk0c=</latexit>

W(1)
<latexit sha1_base64="nKzQnz9bX9AwUJlw9oNMON3dZiY=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRF1GXRjcsK9gFtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucv9zpRKxSLxqGcx9UI8EixgBGsjDWy7H2I99oO0kz2l1fpFNrArTs2ZA60StyAVKNAc2F/9YUSSkApNOFaq5zqx9lIsNSOcZuV+omiMyQSPaM9QgUOqvHSePEPnRhmiIJLmCY3m6u+NFIdKzULfTOY51bKXi/95vUQHN17KRJxoKsjiUJBwpCOU14CGTFKi+cwQTCQzWREZY4mJNmWVTQnu8pdXSbtec69q9YfLSuO2qKMEp3AGVXDhGhpwD01oAYEpPMMrvFmp9WK9Wx+L0TWr2DmBP7A+fwANuJNI</latexit>

W(2)

<latexit sha1_base64="21yzaa2R3mRHu9WKmzG0lV/IwqY=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU02KqMeiF48V7AekoWw2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBXcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrTlLWpEkr3QmKY4JK1gYNgvVQzkoSCdcPx3czvPjFtuJKPMElZkJCh5DGnBKzk92mkAHsXZsAH1Zpbd+fAq8QrSA0VaA2qX/1I0SxhEqggxviem0KQEw2cCjat9DPDUkLHZMh8SyVJmAny+clTfGaVCMdK25KA5+rviZwkxkyS0HYmBEZm2ZuJ/3l+BvFNkHOZZsAkXSyKM4FB4dn/OOKaURATSwjV3N6K6YhoQsGmVLEheMsvr5JOo+5d1RsPl7XmbRFHGZ2gU3SOPHSNmugetVAbUaTQM3pFbw44L86787FoLTnFzDH6A+fzB2f8kLA=</latexit>

·1/si

<latexit sha1_base64="iC1CO8RBStlRYCXn0LpsTNBqVaI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqMeiF48V7Ae2oWw2m3bpZjfsToQS+i+8eFDEq//Gm//GTZuDtj4YeLw3w8y8IBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3AmKY4JK1gYNgvUQzEgeCdYPJbe53n5g2XMkHmCbMj8lI8ohTAlZ6HNBQATZDXhlWa27dnQOvEq8gNVSgNax+DUJF05hJoIIY0/fcBPyMaOBUsFllkBqWEDohI9a3VJKYGT+bXzzDZ1YJcaS0LQl4rv6eyEhszDQObGdMYGyWvVz8z+unEF37GZdJCkzSxaIoFRgUzt/HIdeMgphaQqjm9lZMx0QTCjakPARv+eVV0mnUvct64/6i1rwp4iijE3SKzpGHrlAT3aEWaiOKJHpGr+jNMc6L8+58LFpLTjFzjP7A+fwBvmOQUA==</latexit>·si

<latexit sha1_base64="ATgUpwfGWoZqdP72T2bjWzFePXU=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveRaV6d16uXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/4ORIw==</latexit>x
<latexit sha1_base64="4BSd+cda8Ysxy44cgNaLWSX+h7I=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRF1GXRjcsK9gFtLJPppB06mYSZSSGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucv9zpRKxSLxqNOYeiEeCRYwgrWRBrbdD7Ee+0GWzp6yqnsxG9gVp+bMgVaJW5AKFGgO7K/+MCJJSIUmHCvVc51YexmWmhFOZ+V+omiMyQSPaM9QgUOqvGyefIbOjTJEQSTNExrN1d8bGQ6VSkPfTOY51bKXi/95vUQHN17GRJxoKsjiUJBwpCOU14CGTFKieWoIJpKZrIiMscREm7LKpgR3+curpF2vuVe1+sNlpXFb1FGCUziDKrhwDQ24hya0gMAUnuEV3qzMerHerY/F6JpV7JzAH1ifP0Cok2k=</latexit>

y(1)
<latexit sha1_base64="7PJEp3dNA0GEj7zWjIJF3sjCXEg=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRF1GXRjcsK9gFtLJPppB06mYSZSSGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucv9zpRKxSLxqNOYeiEeCRYwgrWRBrbdD7Ee+0GWzp6yav1iNrArTs2ZA60StyAVKNAc2F/9YUSSkApNOFaq5zqx9jIsNSOczsr9RNEYkwke0Z6hAodUedk8+QydG2WIgkiaJzSaq783MhwqlYa+mcxzqmUvF//zeokObryMiTjRVJDFoSDhSEcorwENmaRE89QQTCQzWREZY4mJNmWVTQnu8pdXSbtec69q9YfLSuO2qKMEp3AGVXDhGhpwD01oAYEpPMMrvFmZ9WK9Wx+L0TWr2DmBP7A+fwBCLpNq</latexit>

y(2)

<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)
<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)

<latexit sha1_base64="meYEYs0luY9YGmCX9DxDNv5g0Cs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRF1GXRjcsK9gFtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucv9zpRKxSLxqGcx9UI8EixgBGsjDWy7H2I99oO0kz2lVfciG9gVp+bMgVaJW5AKFGgO7K/+MCJJSIUmHCvVc51YeymWmhFOs3I/UTTGZIJHtGeowCFVXjpPnqFzowxREEnzhEZz9fdGikOlZqFvJvOcatnLxf+8XqKDGy9lIk40FWRxKEg40hHKa0BDJinRfGYIJpKZrIiMscREm7LKpgR3+curpF2vuVe1+sNlpXFb1FGCUziDKrhwDQ24hya0gMAUnuEV3qzUerHerY/F6JpV7JzAH1ifPwwyk0c=</latexit>

W(1)

ReLU is scale-equivariant

ReLU 𝒔𝑥 = 𝒔 ⋅ ReLU(𝑥)

4747

Equalize the weight channels of layer 1 with weight channel of layer 2

by setting 𝑠Z =
[

\!
" 𝑟Z

[𝑟Z
]

Finding the scaling factors for cross-layer equalization

Weight output channel

D
yn

am
ic

 R
an

ge

Layer 1

0

0.5

1.0

1 2 3 4
min

max

Q
ua

nt
iz

at
io

n
gr

id
 b

 b
its

Weight input channel

D
yn

am
ic

 R
an

ge

Layer 2

0

0.5

1.0

1 2 3 4
min

max

Q
ua

nt
iz

at
io

n
gr

id
 b

 b
its

𝑟!
(")

𝑟!
(!)

/𝑠! ⋅ 𝑠!

4848

Equalize the weight channels of layer 1 with weight channel of layer 2

by setting 𝑠Z =
[

\!
" 𝑟Z

[𝑟Z
]

Finding the scaling factors for cross-layer equalization

Weight output channel

D
yn

am
ic

 R
an

ge

Layer 1

0

0.5

1.0

1 2 3 4
Weight input channel

D
yn

am
ic

 R
an

ge

Layer 2

0

0.5

1.0

1 2 3 4
min

max

Q
ua

nt
iz

at
io

n
gr

id

b
bi

ts

min

max

Q
ua

nt
iz

at
io

n
gr

id

b
bi

ts

𝑟!
(!)𝑟!

(")

4949

Equaliaze activation ranges by absorbing 𝑐 from layer 1 into layer 2

Source sample text

Absorbing large biases to the next layer equalizes
activation ranges

<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)
<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)

𝑾 " 𝑾(#)

𝒙
𝒚 "

𝒚 !

𝒃(!) 𝒃(𝟐)diag 𝒔 2" diag 𝒔 2" diag(𝒔)

5050

Equaliaze activation ranges by absorbing 𝑐 from layer 1 into layer 2

Source sample text

Absorbing large biases to the next layer equalizes
activation ranges

<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)
<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)

𝒙
𝒚 "

𝒚 !

𝒃(𝟐)]𝑾(#)�̂� !]𝑾(!)

5151

Equaliaze activation ranges by absorbing 𝑐 from layer 1 into layer 2

Source sample text

Absorbing large biases to the next layer equalizes
activation ranges

<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)
<latexit sha1_base64="tfEVQCQsfmYqAUfLb1yILPHpKNc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxgv2AdinZbLYNzSZrkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I/xULCIEWys1I2qfRJKcz4oV9yaOwdaJV5OKpCjOSh/9UNJ0pgKQzjWuue5ifEzrAwjnE5L/VTTBJMxHtKepQLHVPvZ/N4pOrNKiCKpbAmD5urviQzHWk/iwHbG2Iz0sjcT//N6qYmu/YyJJDVUkMWiKOXISDR7HoVMUWL4xBJMFLO3IjLCChNjIyrZELzll1dJu17zLmv1+4tK4yaPowgncApV8OAKGnAHTWgBAQ7P8ApvzqPz4rw7H4vWgpPPHMMfOJ8/ZViPjg==</latexit>

f(·)

𝒙
𝒚 "

𝒚 !

−𝒄 𝒃(𝟐)+Y𝑾 ! 𝒄

−𝒄

]𝑾(#)�̂� !

52TinyML Events: A Practical Guide to Neural Network Quantization

Cross-layer equalization significantly improves accuracy

Original weight ranges After cross-layer equalization

Model FP32 INT8

Original Model 71.72 0.12

CLE 71.70 69.91

CLE + absorbing bias 71.57 70.92

Per-channel 71.72 70.65

ImageNet validation accuracy (%) for MobileNetV2

53TinyML Events: A Practical Guide to Neural Network Quantization

Quantizer and range setting

Pre-trained
FP Model CLE Add

Quantizers

Symmetric
Weights

Asymmetric
Activations

Weight
Range
Setting

MSE Range
Setting

Yes

No

Use
Data

MSE Range
Setting

Bias
Correction

AdaRound

Activation
Range
Setting

BN Based
Range Setting

Use Data

No Data

54TinyML Events: A Practical Guide to Neural Network Quantization

Quantizer and range setting

Model (FP32 Accuracy) ResNet18 (69.68) MobileNetV2 (71.72)

Bit-width W8 W6 W8 W6

Min-Max 67.57 63.90 71.16 64.48

MSE 69.45 64.64 71.15 65.43

Min-Max (per-channel) 69.60 69.08 71.21 68.52

MSE (per-channel) 69.66 69.24 71.46 68.89

Weight
Range
Setting

MSE Range
Setting

ImageNet validation accuracy (%)

55TinyML Events: A Practical Guide to Neural Network Quantization

Bias Correction

Pre-trained
FP Model

Add
Quantizers

CLE
Weight
Range
Setting

Yes

No

Use
Data

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

MSE Range
Setting

Bias
Correction

AdaRound

Activation
Range
Setting

BN Based
Range Setting

Use Data

No Data

56TinyML Events: A Practical Guide to Neural Network Quantization

Biased quantization error leads to accuracy drop

Per-channel biased output error introduced by weight quantization of the
second depth-wise separable layer in MobileNetV2

data-free

Key idea: Bias correction

Use batch-norm params
+

Gaussian pre-activations

𝔼 𝒚 − 𝔼 a𝒚 = 𝔼 𝑾𝒙 − 𝔼 c𝑾𝒙
= 𝑾𝔼 𝒙 − c𝑾𝔼 𝒙
= Δ𝑾 𝔼 𝒙

𝔼 𝒚 − 𝔼 -𝒚

F
re

qu
en

cy

57TinyML Events: A Practical Guide to Neural Network Quantization

Bias correction

MobileNetV2 2nd layer

Model W8A8 FP32

Original Model 0.12 71.72

+bias correction 52.02 71.72

CLE + bias absorption 70.92 71.57

+bias correction 71.79 71.57

ImageNet val. accuracy for MobileNetV2

58TinyML Events: A Practical Guide to Neural Network Quantization

AdaRound

Pre-trained
FP Model

Add
Quantizers

CLE
Weight
Range
Setting

Yes

No

Use
Data

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

MSE Range
Setting

Bias
Correction

AdaRound

Activation
Range
Setting

BN Based
Range Setting

Use Data

No Data

59

AdaRound

• Traditionally, in PTQ we use rounding-to-nearest operator

• However, rounding-to-nearest is not optimal?

Rounding Method Accuracy (%)

Nearest 52.29

Floor / Ceil 00.10

Stochastic 52.06±5.52

Stochastic (best) 63.06

4-bit weight quantization of 1st layer of Resnet18,
validation accuracy on ImageNet.

TinyML Events: A Practical Guide to Neural Network Quantization

Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al., ICML 2020)

𝑿*+, = clip 𝐫𝐨𝐮𝐧𝐝 𝑿
4
+ 𝑧,min = 0,max = 25 − 1

6060

Up or Down?
How can we systematically find the best rounding choice?

61

AdaRound: learning to round

• Minimize local 𝐿m loss per-layer rather than task loss:

• where 7𝑾 are soft-quantized weights:

TinyML Events: A Practical Guide to Neural Network Quantization

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

round down learned value between [0,1]+

<latexit sha1_base64="sdVHGMxWlnbz4xoTHrdu2IV5K+8=">AAACPnicbVDPSxtBGJ21tdWoNbZHL4OhkKCG3RLaXgqCF48KJgqZEL6dfLsZnNldZr4tjUv+sl76N/TWo5ceLMWrRyc/Dlb7YODx3vv45ntxoZWjMPwVrLx4ufrq9dp6bWNz6812fedtz+WlldiVuc7tZQwOtcqwS4o0XhYWwcQaL+Kr45l/8RWtU3l2TpMCBwbSTCVKAnlpWO+Om8IAjeOk6k1bXwThN6qkVsVUaEyoKZxKDTzO8Ka4RoJDkYIxwFv7fMEOeHgQCavSMbWG9UbYDufgz0m0JA22xOmw/lOMclkazEhqcK4fhQUNKrCkpMZpTZQOC5BXkGLf0wwMukE1P3/K33tlxJPc+pcRn6uPJyowzk1M7JOzM9xTbyb+z+uXlHweVCorSsJMLhYlpeaU81mXfKQsStITT0Ba5f/K5RgsSPKN13wJ0dOTn5Peh3b0sd056zSOOss61tgu22NNFrFP7IidsFPWZZJ9Zzfslv0JfgS/g7/B3SK6Eixn3rF/ENw/ANn/ric=</latexit>

h(V) = clip (�(V)(⇣ � �) + �, 0, 1)
rectified sigmoid

round-to-
nearest

AdaRound

𝑥&'(

62

AdaRound: learning to round

• Minimize local 𝐿m loss per-layer rather than task loss:

• where 7𝑾 are soft-quantized weights:

• Regularization:

TinyML Events: A Practical Guide to Neural Network Quantization

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

round down learned value between [0,1]+

<latexit sha1_base64="sdVHGMxWlnbz4xoTHrdu2IV5K+8=">AAACPnicbVDPSxtBGJ21tdWoNbZHL4OhkKCG3RLaXgqCF48KJgqZEL6dfLsZnNldZr4tjUv+sl76N/TWo5ceLMWrRyc/Dlb7YODx3vv45ntxoZWjMPwVrLx4ufrq9dp6bWNz6812fedtz+WlldiVuc7tZQwOtcqwS4o0XhYWwcQaL+Kr45l/8RWtU3l2TpMCBwbSTCVKAnlpWO+Om8IAjeOk6k1bXwThN6qkVsVUaEyoKZxKDTzO8Ka4RoJDkYIxwFv7fMEOeHgQCavSMbWG9UbYDufgz0m0JA22xOmw/lOMclkazEhqcK4fhQUNKrCkpMZpTZQOC5BXkGLf0wwMukE1P3/K33tlxJPc+pcRn6uPJyowzk1M7JOzM9xTbyb+z+uXlHweVCorSsJMLhYlpeaU81mXfKQsStITT0Ba5f/K5RgsSPKN13wJ0dOTn5Peh3b0sd056zSOOss61tgu22NNFrFP7IidsFPWZZJ9Zzfslv0JfgS/g7/B3SK6Eixn3rF/ENw/ANn/ric=</latexit>

h(V) = clip (�(V)(⇣ � �) + �, 0, 1)
rectified sigmoid

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

regularizer forces ℎ(𝐕) to be 0 or 1

63TinyML Events: A Practical Guide to Neural Network Quantization

AdaRound results

Quantization method #bits W/A ResNet18 ResNet50 InceptionV3 MobileNetV2

Full precision 32/32 69.68 76.07 77.40 71.72

CLE + BC 4/8 38.98 52.84 - 46.67

Per channel bias corr* 4*/8 67.4 74.8 59.5 -

AdaRound 4/8 68.55 75.01 75.72 69.25

* R Banner, Y. Nahshan, E. Hoffer, D. Soudry, Post-training 4-bit quantization of convolution networks for rapid-deployment, 2019

64TinyML Events: A Practical Guide to Neural Network Quantization

Activation range setting

Pre-trained
FP Model

Add
Quantizers

CLE
Weight
Range
Setting

Yes

No

Use
Data

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

MSE Range
Setting

Bias
Correction

AdaRound

Activation
Range
Setting

BN Based
Range Setting

Use Data

No Data

65Source sample text

PTQ
debugging
flowchart

66TinyML Events: A Practical Guide to Neural Network Quantization

PTQ results using our pipeline

Models FP32
Per-tensor Per-channel

W8A8 diff W4A8 diff W8A8 diff W4A8 diff

ResNet18 69.68 69.60 -0.08 68.62 -1.06 69.56 -0.12 68.91 -0.77

ResNet50 76.07 75.87 -0.20 75.15 -0.92 75.88 -0.19 75.43 -0.64

MobileNetV2 71.72 70.99 -0.73 69.21 -2.51 71.16 -0.56 69.79 -1.93

InceptionV3 77.40 77.68 +0.28 76.48 -0.92 77.71 -0.31 76.82 -0.58

EfficientNet lite 75.42 75.25 -0.17 71.24 -4.18 75.39 -0.03 74.01 -1.41

DeepLabV3 72.94 72.44 -0.50 70.80 -2.14 72.27 -0.67 71.67 -1.27

EfficientDet-D1 40.08 38.29 -1.79 0.31 -39.77 38.67 -1.41 35.08 -5.00

BERT-base 83.06 82.43 -0.63 81.76 -1.30 82.77 -0.29 82.02 -1.04

drop ≤ 1.0%

1.0%< drop ≤1.5%

drop >1.5%

Quantization-
aware training

68TinyML Events: A Practical Guide to Neural Network Quantization

Simulating quantization for backward path
• The round-to-nearest operation does not have

meaningful gradients

• Gradient-based training impossible

• Solution: Redefine gradient with the “straight-
through estimator” (STE)*

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+

*Bengio et al. 2013. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Real Forward pass Simulated forward pass

<latexit sha1_base64="DxgQrhlYvNyKP2MsUtaxnHKhSwc=">AAACGHicbVDLSgMxFM3UV62vUZdugkVwVWekaDdCwY3LCvYBnVIyaaYNzSRDkpGWYT7Djb/ixoUibrvzb8y0g2jrgcDhnPvIPX7EqNKO82UV1tY3NreK26Wd3b39A/vwqKVELDFpYsGE7PhIEUY5aWqqGelEkqDQZ6Ttj28zv/1IpKKCP+hpRHohGnIaUIy0kfr2hRdIhBMvQlJTxBKPBUwImUxSzyygLE1/PDhJb9y+XXYqzhxwlbg5KYMcjb498wYCxyHhGjOkVNd1It1LspGYkbTkxYpECI/RkHQN5SgkqpfMD0vhmVEGMBDSPK7hXP3dkaBQqWnom8oQ6ZFa9jLxP68b66DWSyiPYk04XiwKYga1gFlKcEAlwZpNDUFYUvNXiEfIJKVNliUTgrt88ippXVbcq0r1vlqu1/I4iuAEnIJz4IJrUAd3oAGaAIMn8ALewLv1bL1aH9bnorRg5T3H4A+s2TdDUqG9</latexit>

@bxe
@x

= 1

69TinyML Events: A Practical Guide to Neural Network Quantization

Learning the quantization parameters

𝑿*+, = clamp round
𝑿
𝑠 + 𝑧,min = 0,max = 25 − 1

8𝑿 = 𝒔 (𝑿*+, − 𝒛)

Learn quantization parameters during
training using STE

[1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020
[2] Jain, S. R., Gural, A., Wu, M., and Dick, C. Trained uniform quantization for accurate and efficient neural network inference on fixed-point hardware.
[3] Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and Kwak, N. Lsq+: Improving low-bit quantization through learnable offsets and better initialization.

Through task loss gradients, we find the
optimal trade-off between 𝜖0123 & 𝜖45678

𝑞,-.𝑞,&'

𝑧

0rounding error

𝜖$%&'(∈ −
𝑠
2 ,
𝑠
2

clipping error
𝜖01*2

𝑥
0

𝑥&'(

G𝑥
−𝑠𝑧

70TinyML Events: A Practical Guide to Neural Network Quantization

Batch-norm folding and QAT
Output

Conv/FC

𝑾
Input

Activation

Quantizer

Quantizer

+

𝑦𝒊 = BatchNorm(𝑾2𝒙)

= 𝛾2
𝑾2𝒙 − 𝜇2

𝜎2" + 𝜖
+ 𝛽2

BatchNorm

𝑾3456

𝒃3456
𝑾2

:518
𝒃2
:518

𝑦𝒊 =
𝛾2𝑾2

𝜎2" + 𝜖
𝒙 + 𝛽2 −

𝛾2𝜇2

𝜎2" + 𝜖

𝒃

⋅
𝜸

𝝈# + 𝜖
−

𝜸𝝁
𝝈# + 𝜖

71TinyML Events: A Practical Guide to Neural Network Quantization

How does static folding compare to other methods

Model (FP32 Accuracy) ResNet18 (69.68) MobileNetV2 (71.72)

Bit-width W4A8 W4A4 W4A8 W4A4

Static folding per-tensor 69.76 68.32 70.17 66.43

Double forward* 69.42 68.20 66.87 63.54

Static folding (per-channel) 69.58 68.15 70.52 66.32

Intact BN (per-channel) 70.01 68.83 70.48 66.89

*Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Ablation study for different way to include batch-norm during QAT.
Average ImageNet validation accuracy (%) over 3 seeds.

72TinyML Events: A Practical Guide to Neural Network Quantization

Our proposed QAT pipeline

Pre-trained
FP model

Add
Quantizers

Range
EstimationCLE

Learnable
Quantization

Params
Train

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

BN
folding

Required only for per-
tensor quantization

[1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020

73TinyML Events: A Practical Guide to Neural Network Quantization

Good initialization matters for QAT

Quantization setting FP32 PTQ QAT

W4A8 baseline 71.72 0.10 0.10

W4A8 w/ CLE 71.57 12.99 70.13

W4A8 w/ CLE + BC 71.57 46.90 70.07

Val. accuracy for MobileNetV2 for pet-tensor quantization

CLE

74TinyML Events: A Practical Guide to Neural Network Quantization

Our proposed QAT pipeline

Pre-trained
FP model

Add
Quantizers

Range
EstimationCLE

Learnable
Quantization

Params
Train

Symmetric
Weights

Asymmetric
Activations

MSE Range
Setting

BN
folding

Min-max range also
OK for weights

Gradient scaling [1]

[1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020

Use Adam optimizer
with different learning

rate and schedule

75TinyML Events: A Practical Guide to Neural Network Quantization

QAT results using our pipeline

Models FP32
Per-tensor Per-channel

W8A8 diff W4A8 diff W8A8 diff W4A8 diff

ResNet18 69.68 70.38 +0.70 69.76 +0.08 70.43 +0.75 70.01 +0.33

ResNet50 76.07 76.21 +0.14 75.89 -0.18 76.58 +0.51 76.52 +0.45

MobileNetV2 71.72 71.76 +0.04 70.17 -1.55 71.82 +0.10 70.48 -1.24

InceptionV3 77.40 78.33 +0.93 77.84 +0.44 78.45 +1.05 78.12 +0.72

EfficientNet lite 75.42 75.17 -0.25 71.55 -3.87 74.75 -0.67 73.92 -1.50

DeepLabV3 72.94 73.99 +1.05 70.90 -2.04 72.87 -0.07 73.01 +0.07

EfficientDet-D1 40.08 38.94 -1.14 35.34 -4.74 38.97 -1.11 36.75 -3.33

BERT-base 83.06 83.26 +0.20 82.64 -0.42 82.44 -0.62 82.39 -0.67

drop ≤ 1.0%

1.0%< drop ≤1.5%

drop >1.5%

76TinyML Events: A Practical Guide to Neural Network Quantization

QAT and PTQ comparison

Models FP32
Per-tensor Per-channel

PTQ QAT PTQ QAT

ResNet18 69.68 -1.06 +0.08 -0.77 +0.33

ResNet50 76.07 -0.92 -0.18 -0.64 +0.45

MobileNetV2 71.72 -2.51 -1.55 -1.93 -1.24

InceptionV3 77.40 -0.92 +0.44 -0.58 +0.72

EfficientNet lite 75.42 -4.18 -3.87 -1.41 -1.50

DeepLabV3 72.94 -2.14 -2.04 -1.27 +0.07

EfficientDet-D1 40.08 -39.77 -4.74 -5.00 -3.33

BERT-base 83.06 -1.30 -0.42 -1.04 -0.67

Difference from FP accuracy for W4A8 quantization

drop ≤ 1.0%

1.0%< drop ≤1.5%

drop >1.5%

7777

Leading research in quantization

Source sample text

Relaxed Quantization for Discretized Neural Networks (Louizos, et al.) ICLR 2019

Data-Free Quantization Through Weight Equalization and Bias Correction (Nagel, van
Baalen, et al.)

ICCV 2019

Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al.) ICML 2020

Bayesian Bits: Unifying Quantization and Pruning (van Baalen, Louizos, et al.) NeurIPS 2021

In-Hindsight Quantization Range Estimation for Quantized Training (Fournarakis, et al.) CVPR 2021

A White Paper on Neural Network Quantization (Nagel, Fournarakis, et al.) ArXiv 2021

Understanding and Overcoming the Challenges of Efficient Transformer Quantization
(Bondarenko, et al.)

EMNLP 2021

78

github.com/quic/aimet

github.com/quic/aimet-model-zoo

Tools are open-sourced
through AIMET

AIMET Model Zoo is a product of Qualcomm Innovation Center, Inc.

7979

Join our open-source projects

AIMET
State-of-the-art quantization and compression techniques

github.com/quic/aimet

AIMET Model Zoo
Accurate pre-trained 8-bit quantized models

github.com/quic/aimet-model-zoo

8080

TensorFlow or PyTorch

Trained AI model

AI Model Efficiency Toolkit
(AIMET)

Quantization
• Quantization simulation
• Range Setting
• Data-free quantization
• AdaRound

Compression
• Spatial SVD
• Channel pruning
• Visualization

Optimized AI model

Fine-tune (QAT)

Deploy at scale

AIMET plugs in seamlessly to the developer workflow

81
*: Comparison between FP32 model and INT8 model quantized with AIMET.
For further details, check out: https://github.com/quic/aimet-model-zoo/

ResNet-50
(v1)

Top-1 accuracy*

FP32 INT8
75.21% 74.96%

MobileNet-
v2-1.4

Top-1 accuracy*

FP32 INT8
75% 74.21%

EfficientNet
Lite

Top-1 accuracy*

FP32 INT8
74.93% 74.99%

SSD
MobileNet-v2

mAP*

FP32 INT8
0.2469 0.2456

RetinaNet

mAP*

FP32 INT8
0.35 0.349

Pose
estimation

mAP*

FP32 INT8
0.383 0.379

SRGAN

PSNR*

FP32 INT8
25.45 24.78

MobileNetV2

Top-1 accuracy*

FP32 INT8
7167% 71.14%

EfficientNet-
lite0

Top-1 accuracy*

FP32 INT8
75.42% 74.44%

DeepLabV3+

mIoU*

FP32 INT8
72.62% 72.22%

MobileNetV2-
SSD-Lite

mAP*

FP32 INT8
68.7% 68.6%

Pose
estimation

mAP*

FP32 INT8
0.364 0.359

SRGAN

PSNR

FP32 INT8
25.51 25.5

DeepSpeech2

WER*

FP32 INT8
9.92% 10.22%

AIMET Model Zoo includes popular quantized AI models
Accuracy is maintained for INT8 models — less than 1% loss*

81

<1%
Loss in

accuracy*

Tensorflow Pytorch

8282

Our white paper on neural network quantization

Markus Nagel
Qualcomm Technologies

Netherlands B.V.

Marios Fournarakis
Qualcomm Technologies

Netherlands B.V.

Rana Ali Amjad

Mart van Baalen
Qualcomm Technologies

Netherlands B.V.

Tijmen Blankevoort
Qualcomm Technologies

Netherlands B.V.

Yelysei Bondarenko
Qualcomm Technologies

Netherlands B.V.

83

www.qualcomm.com/ai

@QCOMResearch

www.qualcomm.com/news/onq

https://www.youtube.com/qualcomm?

http://www.slideshare.net/qualcommwirelessevolution

Connect with Us

Questions?

http://www.qualcomm.com/ai
https://www.twitter.com/qualcomm_tech
http://www.qualcomm.com/news/onq
https://www.youtube.com/qualcomm?
http://www.slideshare.net/qualcommwirelessevolution

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you

Nothing in these materials is an offer to sell any of the
components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its
affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of
Qualcomm Incorporated. Other products and brand names

may be trademarks or registered trademarks of their
respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm
Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries
or business units within the Qualcomm corporate structure, as
applicable. Qualcomm Incorporated includes our licensing business,
QTL, and the vast majority of our patent portfolio. Qualcomm
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,

along with its subsidiaries, substantially all of our engineering,
research and development functions, and substantially all of our
products and services businesses, including our QCT semiconductor
business.

Copyright Notice

This multimedia file is copyright © 2021 by tinyML Foundation.
All rights reserved. It may not be duplicated or distributed in any
form without prior written approval.

tinyML® is a registered trademark of the tinyML Foundation.

www.tinyml.org

Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

