tinyML.Talks

Enabling Ultra-low Power Machine Learning at the Edge

"A Practical Guide to Neural Network Quantization"

Marios Fournarakis - Qualcomm AI Research

tinyML Talks Sponsors and Strategic Partners

arm

tinyML Strategic Partner
emza
visual sense
tinyML Strategic Partner
tinyML Strategic Partner
tinyML Strategic Partner
seeed
The IoT Hardware Enabler
tinyML Strategic Partner

Deeplite

$\underset{\text { GECHNOLOGIES }}{\text { GREENWAVES }} \boldsymbol{\text { GR }} \boldsymbol{(})$

tinyML Strategic Partner

tinyML Strategic Partner

Qualcomm

tinyML Strategic Partner

PCx=anin SensiML

inyML Strategic Partner

SynSense

tinyML Strategic Partner

= EDGE IMPULSE

tinyML Strategic Partner

tinyML Strategic Partner
NOW PART OF
maxim integrated..

ANALOG DEVICES

REReality Al

tinyML Strategic Partner

Arm: The Software and Hardware Foundation for tinyML

Stay Connected

- @ArmSoftwareDevelopers

5\% @ArmSoftwareDev
Resources: developer.arm.com/solutions/machine-learning-on-arm

Deeplite
 WE USE AI TO MAKE OTHER AI FASTER, SMALLER AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to $<200 \mathrm{~KB}$ with little to no drop in accuracy for inference on resource-limited MCUs

Reduce model optimization trial \& error from weeks to days using Deeplite's design space exploration

APPLYNow Deploy more models to your device without sacrificing performance or battery life with our easy-to-use software

BECOME BETA USER bit.ly/testdeeplite

TinyML for all developers

Dataset

Acquire valuable
training data securely

The Eye in IoT

Edge AI Visual Sensors

info@emza-vs.com

- Machine Learning algorithm

- Machine Learning edge computing silicon
- <1MB memory footprint
- <1mW always-on power consumption
- Microcontrollers computing power
- Trained algorithm
- Processing of low-res images
- Human detection and other classifiers

Enabling the next generation of Sensor and Hearable products

 to process rich data with energy efficiencyVisible
Image
Sound
IR Image
Radar
Gyro/Accel

Image

Sound

IR Image

Radar

Gyro/Accel

Wearables / Hearables

Battery-powered consumer electronics

loT Sensors

Distributed infrastructure for TinyML apps

Develop at warp speed

Automate deployments

Device orchestration

HOTG is building the distributed infrastructure to pave the way for Al enabled edge applications

S LatentAI

Adaptive Al for the Intelligent Edge

Latentai.com

مn maxim integrated

Maxim Integrated: Enabling Edge Intelligence

The new MAX78000 implements AI inferences at low energy levels, enabling complex audio and video inferencing to run on small batteries. Now the edge can see and hear like never before.

Low Power Cortex M4 Micros

Large (3MB flash + 1MB SRAM) and small (256KB flash + 96KB SRAM, $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$) Cortex M4 microcontrollers enable algorithms and neural networks to run at wearable power levels.
www.maximintegrated.com/microcontrollers

Sensors and Signal Conditioning

Health sensors measure PPG and ECG signals critical to understanding vital signs. Signal chain products enable measuring even the most sensitive signals.
www.maximintegrated.com/sensors

Qeexo AutoML

Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

Key Features

- Supports 17 ML methods:
- Multi-class algorithms: GBM, XGBoost, Random Forest, Logistic Regression, Gaussian Naive Bayes, Decision Tree, Polynomial SVM, RBF SVM, SVM, CNN, RNN, CRNN, ANN
- Single-class algorithms: Local Outlier Factor, One Class SVM, One Class Random Forest, Isolation Forest
- Labels, records, validates, and visualizes time-series sensor data
- On-device inference optimized for low latency, low power consumption, and small memory footprint applications
- Supports Arm ${ }^{\circledR}$ Cortex ${ }^{\text {TM }}$ - M0 to M4 class MCUs

End-to-End Machine Learning Platform

For more information, visit: www.qeexo.com

Target Markets/Applications

- Industrial Predictive Maintenance
- Smart Home
- Wearables
- Automotive
- Mobile
- IoT

Qualconm

Al research

Advancing Al research to make efficient Al ubiquitous

Power efficiency
Model design, compression, quantization, algorithms, efficient hardware, software tool

Personalization
Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning
Robust learning through minimal data, unsupervised learning, on-device learning

A platform to scale AI across the industry

Pre-built Edge Al sensing modules, plus tools to build your own

Reality AI solutions

Prebuilt sound recognition models for indoor and outdoor use cases

Solution for industrial anomaly detection

Pre-built automotive solution that lets cars
"see with sound"

Reality AI Tools ${ }^{\circledR}$ software

Build prototypes, then turn them into
 real products

Explain ML models and relate the function to the physics

[^0]
30, $=n=$ SensiML

Build Smart loT Sensor Devices From Data

SensiML pioneered TinyML software tools that auto generate AI code for the intelligent edge.

- End-to-end AI workflow
- Multi-user auto-labeling of time-series data
- Code transparency and customization at each step in the pipeline

We enable the creation of productiongrade smart sensor devices.

sensiml.com

SynSense

SynSense builds sensing and inference hardware for ultra-lowpower (sub-mW) embedded, mobile and edge devices. We design systems for real-time always-on smart sensing, for audio, vision, IMUs, bio-signals and more.

SYNTIANT

Technical Programm Committee

LIVE ONLINE November 2-5, 2021

(9-11:30 am China Standard time)
https://www.tinyml.org/event/asia-2021/

Register today!

Free event courtesy of our sponsors and strategic partners

EHOTG CO imagimob © LatentAl Qualcomm

SynSense syntiANT
More sponsorships are available: sponsorships@tinyML.org

Focus on:

(i) developing new use cases/apps for tinyML vision; and (ii) promoting tinyML tech \& companies in the developer community

Challenge
arm E EDGE IMPULSE $\stackrel{\Delta}{\Delta}$ Himax Qualcomn

Submissions accepted until September 17 th, 2021 Winners announced on October $5^{\text {th }}, 2021$ ($\$ 6 \mathrm{k}$ value) Sponsorships available: sponsorships@tinyML.org
\#LATTICE
PQ:T PixArt Imoging inc. SynSense

Next tinyML Talks

Date	Presenter	Topic / Title
Tuesday, October 5	Alessio Lomuscio, Professor, Imperial College of London	Verification of ML-based Al systems and its applicability in Edge ML

Webcast start time is 8 am Pacific time
Please contact talks@tinyml.org if you are interested in presenting

Slides \& Videos will be posted tomorrow

tinyml.org/forums

youtube.com/tinyml

Please use the Q\&A window for your questions

Marios Fournarakis

Marios Fournarakis is a Deep Learning Researcher at Qualcomm AI Research in Amsterdam, working on powerefficient training and inference of neural networks, focusing on quantization techniques and compute-in-memory. He is also interested in low-power AI applications and equivariant neural networks. He completed his graduate work in Machine Learning at University College London and holds a Master's in Engineering from the University of Cambridge. Prior to Qualcomm, he worked as a Computer Vision research intern at Niantic Labs in London on ML-based video anonymization, and at Arup as a structural engineering consultant.

A Practical Guide to Neural Network Quantization

Marios Fournarakis
Engineer, Senior
Qualcomm Technologies Netherlands B.V.

Overview

- Energy-efficient machine learning and the need for quantization
- Introduction to neural network quantization
- Simulating quantization in neural networks
- Post-training quantization (PTQ)
- Quantization-aware training (QAT)
- Al Model Efficiency Toolkit (AIMET)*

2025:

2025

Increasingly large and complex neural networks for Natural Language Processing, Image and Video Processing

The Al power and thermal ceiling

The challenge of AI workloads

Very compute intensive

Complex concurrencies

Real-time

Always-on

Constrained mobile environment

d Must be thermally efficient for sleek, ultra-light designs

Requires long battery life for all-day use
(
Storage/memory bandwidth limitations

Advancing AI research to increase power efficiency

Trained neural network model

Trained neural network model

Compression

Learning to prune model while
keeping desired accuracy

Quantization
Learning to reduce bit-precision while keeping desired accuracy

Compilation

Learning to compile AI models for efficient hardware execution

Applying Al to optimize AI model through automated techniques

Advancing Al research to increase power efficiency

Marios Fournarakis Qualcomm Technologies Netherlands B.V.

Yelysei Bondarenko Qualcomm Technologies Netherlands B.V.

Markus Nagel Qualcomm Technologies Netherlands B.V

Mart van Baalen Qualcomm Technologies Netherlands B.V.

Rana Ali Amjad

Tijmen Blankevoort Qualcomm Technologies Netherlands B.V.

Markus Nagel ${ }^{*}$ Qualcomm AI Research \dagger markusn@qti.qual comm.co	Marios Fournarakis* Qualcomm AI Research ${ }^{\dagger}$ mfournar@qti.qualcomm.com
Rana Ali Amjad Qualcomm AI Research amjad@qti.qual comm.com ramaqu.quaicomm.com	Yelysei Bondarenko Qualcomm AI Research ${ }^{\dagger}$ ybodaren@qti.qualcomm.com
$\begin{gathered} \text { Mart van Baalen } \\ \text { Qualcomm AI Research } \\ \text { mart@qti. }{ }^{\dagger} \text { qualcomm.com } \end{gathered}$	Tijmen Blankevoort Qualcomm AI Research ${ }^{\dagger}$ tijmen@qti.qualcomm.com

While neural networks have advanced the frontiers in many applications, they
often come at a high computational cost. Reducing the power and latency of neural network inference is k ke if we want to integrate modern networks into edge devices with strict power and compute requirements. Neural network quantization is one
of the most effective ways of achieving these savings but the additional noise it of the most effective ways of achieving the
induces can lead to accuracy degradation.
In this white paper, we introduce state-of-the-art algorithms for mitigating the
impact of quantization noise on the entworks serformance while maintaing impact of quantization noise on the network's performance while maintaining
low-bit weights and activations. We start with a hardware motivated introduction low-bit weights and activations. We start witha hardware motivated introduction

Our white paper on neural network quantization

What is neural network quantization?

What is neural network quantization?

For any given trained neural network:

- Store weights in low bits (INT8)
- Compute calculations in low bits

Quantization Analogy
Use fewer bits to represent each pixel in an image

Quantizing AI models offers significant benefits

Memory usage

8-bit versus 32-bit weights and activations stored in memory

Power consumption

Significant reduction in energy for both computations and memory access

Add energy (pJ)		Mem access energy (pJ)	
INT8	FP32		
0.03	0.9	Cache (64-bit)	
30X energy reduction		8KB	10
		32KB	20
Mult energy (pJ)		1MB	100
INT8	FP32	DRAM	$\begin{aligned} & 1300- \\ & 2600 \end{aligned}$
0.2	3.7		
18.5X energy reduction		Up to 4X energy reduction	

Latency

With less memory access and simpler computations, latency can be reduced

Silicon area
Integer math or less bits require less silicon area compared to floating point math and more bits

Add area $\left(\mu^{2}\right)$	
INT8	FP32
36	4184
116X	area reduction

Mult area $\left(\mu^{2}\right)$	
INT8	FP32
282	7700
27X	area reduction

Matrix operations are the backbone of neural networks

A running example to showcase how to make these operations more efficient

$$
\boldsymbol{W}=\left(\begin{array}{llll}
0.97 & 0.64 & 0.74 & 1.00 \\
0.58 & 0.84 & 0.84 & 0.81 \\
0.00 & 0.18 & 0.90 & 0.28 \\
0.57 & 0.96 & 0.80 & 0.81
\end{array}\right) \quad \boldsymbol{X}=\left(\begin{array}{cccc}
0.41 & 0.25 & 0.73 & 0.66 \\
0.00 & 0.41 & 0.41 & 0.57 \\
0.42 & 0.24 & 0.71 & 1.00 \\
0.39 & 0.82 & 0.17 & 0.35
\end{array}\right) \quad \boldsymbol{b}=\left(\begin{array}{c}
0.1 \\
0.2 \\
0.3 \\
0.4
\end{array}\right)
$$

How to most efficiently calculate $W X+b$?

A schematic MAC array for efficient computation

The array efficiently calculates the dot product between multiple vectors

$$
A_{i}=W_{i} \cdot I_{1}+W_{i} \cdot I_{2}+W_{i} \cdot I_{3}+W_{i} \cdot I_{4}
$$

Step-by-step matrix multiplication in MAC array

Quantization comes at a cost of lost precision

- We can approximate an FP tensor with an integer tensor multiplied by a scale-factor, s_{X} :

$$
\begin{gathered}
\text { FP32 tensor } \longrightarrow \boldsymbol{X} \approx s_{X} \boldsymbol{X}_{\text {int }}=\widehat{\boldsymbol{X}} \sim \text { scaled quantized tensor } \\
\boldsymbol{W}=\left(\begin{array}{cccc}
0.97 & 0.64 & 0.74 & 1.00 \\
0.58 & 0.84 & 0.84 & 0.81 \\
0.00 & 0.18 & 0.90 & 0.28 \\
0.57 & 0.96 & 0.80 & 0.81
\end{array}\right) \approx \frac{1}{255}\left(\begin{array}{cccc}
247 & 163 & 189 \rightarrow & 255 \\
148 & 214 & 214 & 207 \\
\frac{0}{46} & 229 & 71 \\
145 & 245 & 204 & 207
\end{array}\right)=s_{W} W_{\text {uint8 }}
\end{gathered}
$$

- Quantization is not free:

$$
\boldsymbol{\epsilon}=\boldsymbol{W}-s_{W} \boldsymbol{W}_{\text {int }}=\frac{1}{255}\left(\begin{array}{cccc}
0.35 & 0.20 & -0.3 & 0 \\
-0.1 & 0.20 & 0.20 & -0.45 \\
0.00 & -0.1 & -0.5 & 0.40 \\
0.35 & -0.2 & 0 & -0.45
\end{array}\right)
$$

Different types of quantization have pros and cons

Symmetric, asymmetric, signed, and unsigned quantization

Fixed point grid
Floating point grid
s : scale factor
z: zero-point

Quantized inference using symmetric quantization

What type of quantization should you use?

W : weight matrix
\boldsymbol{X} : input of a layer
Symmetric quantization
Asymmetric quantization

$$
\begin{array}{rr}
\boldsymbol{W} \boldsymbol{X} \approx s_{W}\left(\boldsymbol{W}_{\mathrm{int}}\right) s_{X}\left(\boldsymbol{X}_{\mathrm{int}}\right) & \boldsymbol{W} \boldsymbol{X} \approx s_{W}\left(\boldsymbol{W}_{\mathrm{int}}-z_{W}\right) s_{X}\left(X_{\mathrm{int}}-z_{X}\right) \\
=s_{W} s_{X}\left(\boldsymbol{W}_{\mathrm{int}} \boldsymbol{X}_{\mathrm{int}}\right) & =s_{W} s_{X}\left(\boldsymbol{W}_{\mathrm{int}} \boldsymbol{X}_{\mathrm{int}}\right)+\underbrace{s_{W} s_{X} z_{X} \boldsymbol{W}_{\mathrm{int}}+s_{W} z_{W} s_{X} z_{X}}_{\text {Same calculation }}+\underbrace{s_{W} s_{X} z_{W} \boldsymbol{X}_{\mathrm{int}}}_{\begin{array}{c}
\text { Precompute, add to } \\
\text { layer bias }
\end{array}}
\end{array}
$$

Asymmetric weight quantization is equivalent to adding an input channel

Symmetric weights and asymmetric activations more hardware efficient

Simulating quantization

Why simulate quantization?

- We simulate fixed-point operations with floating-point numbers using general purpose hardware (e.g. CPU, GPU)
- This simulation is achieved by introducing simulated quantization operations (quantizers) to the compute graph.
- Quantization simulation benefits:
- Enables GPUs acceleration
- No need for dedicated kernels
- Test various quantization option and bit-widths

On-device fixed-point inference

Simulated quantized inference

What operations do the quantizer perform?

Assuming asymmetric quantization the quantization operation applied to input tensor \boldsymbol{X} :

$$
\begin{aligned}
\boldsymbol{X}_{\mathrm{int}} & =\operatorname{clip}\left(\operatorname{round}\left(\frac{\boldsymbol{X}}{s}\right)+z, \min =0, \max =2^{b}-1\right) \\
\widehat{\boldsymbol{X}} & =s\left(\boldsymbol{X}_{\mathrm{int}}-z\right)
\end{aligned}
$$

Example using $b=4$:

$$
\begin{aligned}
X=\left(\begin{array}{cc}
0.41 & 0.0 \\
0.8 & -0.5
\end{array}\right) & s=\frac{1}{15}=0.067 \\
z & =\operatorname{round}\left(\frac{0.5}{0.067}\right)=8
\end{aligned}
$$

What operations do the quantizer perform?

Assuming asymmetric quantization the quantization operation applied to input tensor \boldsymbol{X} :

$$
\begin{aligned}
\boldsymbol{X}_{\mathrm{int}} & =\operatorname{clip}\left(\operatorname{round}\left(\frac{\boldsymbol{X}}{s}\right)+z, \min =0, \max =2^{b}-1\right) \\
\widehat{\boldsymbol{X}} & =s\left(\boldsymbol{X}_{\text {int }}-z\right) \quad \operatorname{round}\left(\frac{X}{s}\right)+z=\left(\begin{array}{ll}
14 & 8 \\
20 & 0
\end{array}\right)
\end{aligned}
$$

Example using $b=4: \quad s=0.067 \quad z=8$

$$
\frac{X}{s}=\left(\begin{array}{cc}
6.15 & 0.0 \\
12 & -7.5
\end{array}\right)
$$

What operations do the quantizer perform?

Assuming asymmetric quantization the quantization operation applied to input tensor \boldsymbol{X} :

$$
\begin{aligned}
\boldsymbol{X}_{\mathrm{int}} & =\operatorname{clip}\left(\operatorname{round}\left(\frac{\boldsymbol{X}}{s}\right)+z, \min =0, \max =2^{b}-1\right) \\
\widehat{\boldsymbol{X}} & =s\left(\boldsymbol{X}_{\mathrm{int}}-z\right) \quad \operatorname{round}\left(\frac{X}{s}\right)+z=\left(\begin{array}{ll}
14 & 8 \\
20 & 0
\end{array}\right)
\end{aligned}
$$

$$
\text { Example using } b=4: \quad s=0.067 \quad z=8
$$

$$
\begin{gathered}
\operatorname{round}\left(\frac{X}{S}\right)+z=\left(\begin{array}{ll}
14 & 8 \\
20 & 0
\end{array}\right) \stackrel{\text { de-quantize }}{\stackrel{\text { clip }}{14}}\left(\begin{array}{ll}
14 & 8 \\
15 & 0
\end{array}\right)
\end{gathered}
$$

$$
X=\left(\begin{array}{cc}
0.41 & 0.0 \\
0.8 & -0.5
\end{array}\right) \quad \hat{X}=\left(\begin{array}{cc}
0.4 & 0.0 \\
0.47 & -0.53
\end{array}\right)
$$

Per-channel vs Per-tensor quantization of weights

- Per-tensor quantization most supported by fixed-point accelerators
- Per-channel quantization better utilizes the quantization grid
- Per-channel quantization increasingly popular for weights
- Check for HW support

How to simulate quantization in common DL layers

Choosing the quantization parameters

Sources of quantization error

Sources of quantization error

Quantization range setting methods

- Min-max range:

$$
\begin{aligned}
q_{\min } & =\min X \\
q_{\max } & =\max X
\end{aligned}
$$

- Optimization-based methods:

$$
\operatorname{argmin}_{q_{\min }, q_{\max }} \frac{\ell\left(\boldsymbol{X}, \widehat{\boldsymbol{X}}\left(q_{\min }, q_{\max }\right)\right)}{\text { MSE }}=\begin{gathered}
\text { Cross-entropy }
\end{gathered}
$$

- Batch-Norm Based [1]:

$$
\begin{aligned}
q_{\min }=\min (\boldsymbol{\beta}-\alpha \boldsymbol{\gamma}) & \text { BatchNorm }\left(\mathbf{z}_{k}\right) \\
q_{\max }=\max (\boldsymbol{\beta}+\alpha \boldsymbol{\gamma}) & =\boldsymbol{\gamma}_{k} \frac{\boldsymbol{z}_{k}-\boldsymbol{\mu}_{k}}{\sqrt{\boldsymbol{\sigma}_{k}+\epsilon}}+\boldsymbol{\beta}_{k}
\end{aligned}
$$

Quantization setting methods ablation study

Model (FP32 Accuracy)	ResNet18 (69.68)		MobileNetV2 (71.72)	
Bit-width	A8	A6	A8	A6
Min-Max	69.60	68.19	70.96	64.58
MSE	69.59	67.84	71.35	67.55
MSE \& X-entropy	69.60	68.91	71.36	68.85
$\mathrm{BN}(\alpha=6)$	69.54	68.73	71.32	71.32

Post-Training Quantization (PTQ)

\checkmark Takes a pre-trained network and converts it to a fixed-point network without access to the training pipeline
\checkmark Data-free or small calibration set needed
\checkmark Use though single API call
\times Lower accuracy at lower bit-widths

Quantization-Aware Training (QAT)

\times Requires access to training pipeline and labelled data
\times Longer training times
\times Hyper-parameter tuning
\checkmark Achieves higher accuracy

What algorithm to choose to improve accuracy?

Post-training quantization

Post-training quantization pipeline

Nagel et al, 2019, Data-Free Quantization Through Weight Equalization and Bias Correction

Imbalanced weights is a common problem in practice

Cross-layer equalization scales weights in neighboring layers for better quantization

$$
\operatorname{ReLU}(x)=\max (0, x)
$$

ReLU is scale-equivariant

We can scale two neighboring layers together to optimize it for quantization

Finding the scaling factors for cross-layer equalization

Layer 1

Layer 2

Equalize the weight channels of layer 1 with weight channel of layer 2

$$
\text { by setting } s_{i}=\frac{1}{r_{i}^{(2)}} \sqrt{r_{i}^{(1)} r_{i}^{(2)}}
$$

Finding the scaling factors for cross-layer equalization

Layer 1

Layer 2

Equalize the weight channels of layer 1 with weight channel of layer 2

$$
\text { by setting } s_{i}=\frac{1}{r_{i}^{(2)}} \sqrt{r_{i}^{(1)} r_{i}^{(2)}}
$$

Absorbing large biases to the next layer equalizes activation ranges

Equaliaze activation ranges by absorbing c from layer 1 into layer 2

Absorbing large biases to the next layer equalizes activation ranges

Equaliaze activation ranges by absorbing c from layer 1 into layer 2

Absorbing large biases to the next layer equalizes activation ranges

Equaliaze activation ranges by absorbing c from layer 1 into layer 2

Cross-layer equalization significantly improves accuracy

Model	FP32	INT8
Original Model	71.72	0.12
CLE	71.70	69.91
CLE + absorbing bias	71.57	70.92
Per-channel	71.72	70.65

ImageNet validation accuracy (\%) for MobileNetV2

Quantizer and range setting

Quantizer and range setting

Model (FP32 Accuracy)	ResNet18 (69.68)		MobileNetV2 (71.72)	
Bit-width	W8	W6	W8	W6
Min-Max	67.57	63.90	71.16	64.48
MSE	69.45	64.64	71.15	65.43
Min-Max (per-channel)	69.60	69.08	71.21	68.52
MSE (per-channel)	69.66	69.24	71.46	68.89

ImageNet validation accuracy (\%)

Bias Correction

Biased quantization error leads to accuracy drop

$$
\begin{aligned}
\mathbb{E}[\boldsymbol{y}]-\mathbb{E}[\widehat{\boldsymbol{y}}] & =\mathbb{E}[\boldsymbol{W} x]-\mathbb{E}[\widehat{\boldsymbol{W}} x] \\
& =W \mathbb{E}[x]-\widehat{W} \mathbb{E}[x] \\
& =\Delta W \mathbb{E}[x]
\end{aligned}
$$

Biased Output Error per Output Channel

Per-channel biased output error introduced by weight quantization of the second depth-wise separable layer in MobileNetV2

Key idea: Bias correction

Use batch-norm params
$+$
Gaussian pre-activations

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\mathbb{E}\left[\operatorname{ReLU}\left(\mathbf{x}^{\mathrm{pre}}\right)\right] \\
& =\boldsymbol{\gamma} \mathcal{N}\left(\frac{-\boldsymbol{\beta}}{\boldsymbol{\gamma}}\right)+\boldsymbol{\beta}\left[\mathbf{1}-\Phi\left(\frac{-\boldsymbol{\beta}}{\boldsymbol{\gamma}}\right)\right]
\end{aligned}
$$

Bias correction

Model	W8A8	FP32
Original Model	0.12	71.72
+bias correction	52.02	71.72
CLE + bias absorption	70.92	71.57
+bias correction	71.79	71.57

ImageNet val. accuracy for MobileNetV2

AdaRound

AdaRound

- Traditionally, in PTQ we use rounding-to-nearest operator

$$
\boldsymbol{X}_{\mathrm{int}}=\operatorname{clip}\left(\operatorname{round}\left(\frac{X}{s}\right)+z, \min =0, \max =2^{b}-1\right)
$$

- However, rounding-to-nearest is not optimal?

Rounding Method	Accuracy (\%)
Nearest	52.29
Floor / Ceil	00.10
Stochastic	52.06 ± 5.52
Stochastic (best)	63.06

4-bit weight quantization of $1^{\text {st }}$ layer of Resnet18, validation accuracy on ImageNet.

Up or Down?

How can we systematically find the best rounding choice?

AdaRound: learning to round

- Minimize local L_{2} loss per-layer rather than task loss:

$$
\underset{\mathbf{V}}{\arg \min }\|\mathbf{W} \mathbf{x}-\widetilde{\mathbf{W}} \mathbf{x}\|_{F}^{2}
$$

- where \widetilde{W} are soft-quantized weights:
$h(\mathbf{V})=\operatorname{clip}(\sigma(\mathbf{V})(\zeta-\gamma)+\gamma, 0,1)$

$$
\widetilde{\mathbf{W}}=\mathrm{s} \cdot \operatorname{clip}\left(\frac{\mathbf{W}}{\mathrm{~s}}\right\rfloor+h(\mathbf{V})(\mathrm{n}, \mathrm{p})
$$

AdaRound: learning to round

- Minimize local L_{2} loss per-layer rather than task loss:

$$
\underset{\mathbf{V}}{\arg \min }\|\mathbf{W} \mathbf{x}-\widetilde{\mathbf{W}} \mathbf{x}\|_{F}^{2}+\lambda f_{\text {reg }}(\mathbf{V}) \text { regularizer forces } h(\mathbf{V}) \text { to be } 0 \text { or } 1
$$

- where \widetilde{W} are soft-quantized weights:

$$
\widetilde{\mathbf{W}}=\mathrm{s} \cdot \operatorname{clip}\left(\frac{\mathbf{W}}{\mathrm{~s}}\right\rfloor+h(\mathbf{V})(\mathrm{n}, \mathrm{p})
$$

$$
h(\mathbf{V})=\operatorname{clip}(\sigma(\mathbf{V})(\zeta-\gamma)+\gamma, 0,1)
$$

round down + learned value between $[0,1]$

- Regularization:

$$
f_{\text {reg }}(\mathbf{V})=\sum_{i, j} 1-\left|2 h\left(\mathbf{V}_{i, j}\right)-1\right|^{\beta}
$$

AdaRound results

Quantization method	\#bits W/A	ResNet18	ResNet50	InceptionV3	MobileNetV2
Full precision	$32 / 32$	69.68	76.07	77.40	71.72
CLE + BC	$4 / 8$	38.98	52.84	-	46.67
Per channel bias corr*	$4 * / 8$	67.4	74.8	59.5	-
AdaRound	$4 / 8$	68.55	75.01	75.72	69.25

Activation range setting

PTQ debugging flowchart

PTQ results using our pipeline

$$
\text { drop } \leq 1.0 \%
$$

$$
1.0 \%<\operatorname{drop} \leq 1.5 \%
$$

- drop $>1.5 \%$

Models	FP32	Per-tensor				Per-channel			
		W8A8	diff	W4A8	diff	W8A8	diff	W4A8	diff
ResNet18	69.68	69.60	-0.08	68.62	-1.06	69.56	-0.12	68.91	-0.77
ResNet50	76.07	75.87	-0.20	75.15	-0.92	75.88	-0.19	75.43	-0.64
MobileNetV2	71.72	70.99	-0.73	69.21	-2.51	71.16	-0.56	69.79	-1.93
InceptionV3	77.40	77.68	+0.28	76.48	-0.92	77.71	-0.31	76.82	-0.58
EfficientNet lite	75.42	75.25	-0.17	71.24	-4.18	75.39	-0.03	74.01	-1.41
DeepLabV3	72.94	72.44	-0.50	70.80	-2.14	72.27	-0.67	71.67	-1.27
EfficientDet-D1	40.08	38.29	-1.79	0.31	-39.77	38.67	-1.41	35.08	-5.00
BERT-base	83.06	82.43	-0.63	81.76	-1.30	82.77	-0.29	82.02	-1.04

Quantizationaware training

Simulating quantization for backward path

- The round-to-nearest operation does not have meaningful gradients
- Gradient-based training impossible
- Solution: Redefine gradient with the "straightthrough estimator" (STE)*

Real Forward pass

$$
\frac{\partial\lfloor x\rceil}{\partial x}=1
$$

Simulated forward pass

Learning the quantization parameters

Learn quantization parameters during training using STE

$$
\begin{aligned}
\boldsymbol{X}_{\mathrm{int}} & =\operatorname{clamp}\left(\operatorname{round}\left(\frac{\boldsymbol{X}}{s}\right)+z, \min =0, \max =2^{b}-1\right) \\
\widehat{\boldsymbol{X}} & =\boldsymbol{s}\left(\boldsymbol{X}_{\mathrm{int}}-\mathbf{z}\right)
\end{aligned}
$$

Through task loss gradients, we find the optimal trade-off between $\epsilon_{\text {clip }} \& \epsilon_{\text {round }}$

[^1]
Batch-norm folding and QAT

$$
\begin{gathered}
y_{\boldsymbol{i}}=\text { BatchNorm }\left(\boldsymbol{W}_{i} \boldsymbol{x}\right) \\
=\gamma_{i}\left(\frac{\boldsymbol{W}_{i} \boldsymbol{x}-\mu_{i}}{\sqrt{\sigma_{i}^{2}+\epsilon}}\right)+\beta_{i} \\
y_{\boldsymbol{i}}=\underbrace{\frac{\gamma_{i} \boldsymbol{W}_{i}}{\sqrt{\sigma_{i}^{2}+\epsilon}} \boldsymbol{x}+(\underbrace{}_{\boldsymbol{b}_{i}^{\text {fold }}}+\frac{\gamma_{i} \mu_{i}}{\sqrt{\sigma_{i}^{2}+\epsilon}})}_{\boldsymbol{W}_{i}^{\text {fold }}}
\end{gathered}
$$

How does static folding compare to other methods

Model (FP32 Accuracy)	ResNet18 (69.68)		MobileNetV2 (71.72)	
Bit-width	W4A8	W4A4	W4A8	W4A4
Static folding per-tensor	69.76	68.32	70.17	66.43
Double forward*	69.42	68.20	66.87	63.54
Static folding (per-channel)	69.58	68.15	70.52	66.32
Intact BN (per-channel)	70.01	68.83	70.48	66.89

Ablation study for different way to include batch-norm during QAT.
Average ImageNet validation accuracy (\%) over 3 seeds.

Our proposed QAT pipeline

[^2]
Good initialization matters for QAT

Quantization setting	FP32	PTQ	QAT
W4A8 baseline	71.72	0.10	0.10
W4A8 w/ CLE	71.57	12.99	70.13
W4A8 w/ CLE + BC	71.57	46.90	70.07

Val. accuracy for MobileNetV2 for pet-tensor quantization

Our proposed QAT pipeline

[^3]
QAT results using our pipeline

$$
\text { drop } \leq 1.0 \%
$$

$$
1.0 \%<\operatorname{drop} \leq 1.5 \%
$$

drop $>1.5 \%$

Models	FP32	Per-tensor				Per-channel			
		W8A8	diff	W4A8	diff	W8A8	diff	W4A8	diff
ResNet18	69.68	70.38	+0.70	69.76	+0.08	70.43	+0.75	70.01	+0.33
ResNet50	76.07	76.21	+0.14	75.89	-0.18	76.58	+0.51	76.52	+0.45
MobileNetV2	71.72	71.76	+0.04	70.17	-1.55	71.82	+0.10	70.48	-1.24
InceptionV3	77.40	78.33	+0.93	77.84	+0.44	78.45	+1.05	78.12	+0.72
EfficientNet lite	75.42	75.17	-0.25	71.55	-3.87	74.75	-0.67	73.92	-1.50
DeepLabV3	72.94	73.99	+1.05	70.90	-2.04	72.87	-0.07	73.01	+0.07
EfficientDet-D1	40.08	38.94	-1.14	35.34	-4.74	38.97	-1.11	36.75	-3.33
BERT-base	83.06	83.26	+0.20	82.64	-0.42	82.44	-0.62	82.39	-0.67

QAT and PTQ comparison

Difference from FP accuracy for W4A8 quantization

Models	FP32	Per-tensor		Per-channel	
		PTQ	QAT	PTQ	QAT
ResNet18	69.68	-1.06	+0.08	-0.77	+0.33
ResNet50	76.07	-0.92	-0.18	-0.64	+0.45
MobileNetV2	71.72	-2.51	-1.55	-1.93	-1.24
InceptionV3	77.40	-0.92	+0.44	-0.58	+0.72
EfficientNet lite	75.42	-4.18	-3.87	-1.41	-1.50
DeepLabV3	72.94	-2.14	-2.04	-1.27	+0.07
EfficientDet-D1	40.08	-39.77	-4.74	-5.00	-3.33
BERT-base	83.06	-1.30	-0.42	-1.04	-0.67

Relaxed Quantization for Discretized Neural Networks (Louizos, et al.)	ICLR 2019
Data-Free Quantization Through Weight Equalization and Bias Correction (Nagel, van Baalen, et al.)	ICCV 2019
Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al.)	ICML 2020
Bayesian Bits: Unifying Quantization and Pruning (van Baalen, Louizos, et al.)	NeurIPS 2021
In-Hindsight Quantization Range Estimation for Quantized Training (Fournarakis, et al.)	CVPR 2021
A White Paper on Neural Network Quantization (Nagel, Fournarakis, et al.)	ArXiv 2021
Understanding and Overcoming the Challenges of Efficient Transformer Quantization (Bondarenko, et al.)	EMNLP 2021

Leading research in quantization

Tools are open-sourced through AIMET

github.com/quic/aimet
github.com/quic/aimet-model-zoo

AIMET

State-of-the-art quantization and compression techniques

github.com/quic/aimet

AIMET Model Zoo

Accurate pre-trained 8-bit quantized models

READMEmd

雷 Qualcomm Innovation Center
Model Zoo for AI Model Efficiency Toolkit
We provide a collection of popular neural network models and compare their floating point and quantized performance. Results demonstrate that quantized models can provide good accuray, comparable tof foating point
modeds. Together with results, we also provide recipes for users to quantize floting-point models using the A I Model Efficiengy Tookikit (AIMET).
Table of Contents

- Introduction
- Tensofflow Models
\therefore Detailed Results
- PyTorch Modeles
- Model Zoo
$\stackrel{\circ}{\circ} \stackrel{\text { Detailed }}{ } \cdot$ Examples
- Examples
- License

Introduction
Quantized inference is significanty faster than floating-point inference, and enables models to run in a power-efficient
 quantization to quantize various models svailable in Tensorflow and PyyTrch frameworks. The ist of models is provided in the sections below.
github.com/quic/aimet-model-zoo

Join our open-source projects

Fine-tune (QAT)

AIMET plugs in seamlessly to the developer workflow

AIMET Model Zoo includes popular quantized AI models

Accuracy is maintained for INT8 models - less than 1\% loss*

Tensorflow

7167%	71.14%
FP32	INT8
Top-1 accuracy*	

MobileNetV2

Pytorch

Pose estimation

Marios Fournarakis Qualcomm Technologies Netherlands B.V.

Yelysei Bondarenko Qualcomm Technologies Netherlands B.V.

Markus Nagel Qualcomm Technologies Netherlands B.V

Mart van Baalen Qualcomm Technologies Netherlands B.V.

Rana Ali Amjad

Tijmen Blankevoort Qualcomm Technologies Netherlands B.V.

Markus Nagel ${ }^{*}$ Qualcomm AI Research markusn@qti.qualcomm.com	Marios Fournarakis* Qualcomm AI Research ${ }^{\dagger}$ mfournar@qti.qualcomm.com
Rana Ali Amjad Qualcomm AI Research ${ }^{\dagger}$ ramjad@qti.qualcomm.com	Yelysei Bondarenko Qualcomm AI Research ${ }^{\dagger}$ ybodaren@qti.qualcomm.com
Mart van Baalen Qualcomm AI Research ${ }^{\dagger}$ mart@qti.qualcomm.com	Tijmen Blankevoort Qualcomm AI Research ${ }^{\dagger}$ tijmen@qti.qualcomm.com

While neural networks have advanced the frontiers in many applications, they
often come at a high computational cost. Reducing the power and latency of neural network inference is k ke if we want to integrate modern networks into edge devices with strict power and compute requirements. Neural network quantization is one
of the most effective ways of achieving these savings but the additional noise it of the most effective ways of achieving the
induces can lead to accuracy degradation.
In this white paper, we introduce state-of-the-art algorithms for mitigating the
impact of quantization noise on the entworks serformance while maintaing impact of quantization noise on the network's performance while maintaining
low-bit weights and activations. We start with a hardware motivated introduction low-bit weights and activations. We start witha hardware motivated introduction

Our white paper on neural network quantization

www.qualcomm.com/ai

www.qualcomm.com/news/ong

Questions?

Connect with Us
@QCOMResearch
http://www.slideshare.net/qualcommwirelessevolution

Qualcomn

Thank you

For more information, visit us at:
www.qualcomm.com \& www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

O2018-2021 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

Copyright Notice

This multimedia file is copyright © 2021 by tinyML Foundation. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.
tiny ML^{\circledR} is a registered trademark of the tinyML Foundation.

Copyright Notice

This presentation in this publication was presented as a tinyML ${ }^{\circledR}$ Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.
tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

[^0]: Optimize the hardware, including
 sensor selection and placement

[^1]: [1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020
 [2] Jain, S. R., Gural, A., Wu, M., and Dick, C. Trained uniform quantization for accurate and efficient neural network inference on fixed-point hardware.
 [3] Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and Kwak, N. Lsq+: Improving low-bit quantization through learnable offsets and better initialization.

[^2]: [1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020

[^3]: [1] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization, 2020

