tinyML. Meetups

Enabling Ultra-low Power Machine Learning at the Edge

"Tinyml: opportunities for Italian manufacturing firms"

Stefano Costa - Bluewind

October 29, 2021

tinyML Talks Strategic Partners

AONdevices

Arm: The Software and Hardware Foundation for tinyML

Resources: developer.arm.com/solutions/machine-learning-on-arm

WE USE AI TO MAKE OTHER AI FASTER, SMALLER AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to <200KB with **little to no drop in accuracy** for inference on resource-limited MCUs

Reduce model optimization trial & error from weeks to days using Deeplite's **design space exploration**

Deploy more models to your device without sacrificing performance or battery life with our **easy-to-use software**

BECOME BETA USER bit.ly/testdeeplite

TinyML for all developers

The Eye in IoT

Edge Al Visual Sensors

info@emza-vs.com

- · Machine Learning algorithm
- <1MB memory footprint</p>
- · Microcontrollers computing power
- · Trained algorithm
- Processing of low-res images
- · Human detection and other classifiers

- Machine Learning edge computing silicon
- <1mW always-on power consumption
- Computer Vision hardware accelerators

Enabling the next generation of Sensor and Hearable products to process rich data with energy efficiency

Visible Image

Sound

IR Image

Radar

Bio-sensor

Gyro/Accel

Wearables / Hearables

Battery-powered consumer electronics

IoT Sensors

Distributed infrastructure for TinyML apps

Develop at warp speed

Automate deployments

Device orchestration

HOTG is building the distributed infrastructure to pave the way for AI enabled edge applications

Adaptive AI for the Intelligent Edge

Maxim Integrated: Enabling Edge Intelligence

Advanced AI Acceleration IC

The new MAX78000 implements AI inferences at low energy levels, enabling complex audio and video inferencing to run on small batteries. Now the edge can see and hear like never before.

www.maximintegrated.com/MAX78000

Low Power Cortex M4 Micros

Large (3MB flash + 1MB SRAM) and small (256KB flash + 96KB SRAM, 1.6mm x 1.6mm) Cortex M4 microcontrollers enable algorithms and neural networks to run at wearable power levels.

www.maximintegrated.com/microcontrollers

Sensors and Signal Conditioning

Health sensors measure PPG and ECG signals critical to understanding vital signs. Signal chain products enable measuring even the most sensitive signals.

www.maximintegrated.com/sensors

Qeexo AutoML

Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

Key Features

- Supports 17 ML methods:
 - Multi-class algorithms: GBM, XGBoost, Random Forest, Logistic Regression, Gaussian Naive Bayes, Decision Tree, Polynomial SVM, RBF SVM, SVM, CNN, RNN, CRNN, ANN
 - Single-class algorithms: Local Outlier Factor, One
 Class SVM, One Class Random Forest, Isolation Forest
- Labels, records, validates, and visualizes time-series sensor data
- On-device inference optimized for low latency, low power consumption, and small memory footprint applications
- Supports Arm® CortexTM- M0 to M4 class MCUs

End-to-End Machine Learning Platform

For more information, visit: www.qeexo.com

Target Markets/Applications

- Industrial Predictive Maintenance
- Smart Home
- Wearables

- Automotive
- Mobile
- IoT

Qualcomm Al research

Advancing Al research to make efficient Al ubiquitous

Power efficiency

Model design, compression, quantization, algorithms, efficient hardware, software tool

Personalization

Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning

Robust learning through minimal data, unsupervised learning, on-device learning

A platform to scale Al across the industry

Perception

Object detection, speech recognition, contextual fusion

Edge cloud

Add Advanced Sensing to your Product with Edge AI / TinyML

https://reality.ai

Pre-built Edge Al sensing modules, plus tools to build your own

Reality AI solutions

Prebuilt sound recognition models for indoor and outdoor use cases

Solution for industrial anomaly detection

Pre-built automotive solution that lets cars "see with sound"

Reality Al Tools® software

Build prototypes, then turn them into real products

Explain ML models and relate the function to the physics

Optimize the hardware, including sensor selection and placement

Build Smart IoT Sensor Devices From Data

SensiML pioneered TinyML software tools that auto generate AI code for the intelligent edge.

- End-to-end Al workflow
- Multi-user auto-labeling of time-series data
- Code transparency and customization at each step in the pipeline

We enable the creation of productiongrade smart sensor devices.

sensiml.com

SynSense builds **sensing and inference** hardware for **ultra-low-power** (sub-mW) **embedded, mobile and edge** devices. We design systems for **real-time always-on smart sensing**, for audio, vision, IMUs, bio-signals and more.

https://SynSense.ai

SYNTIANT

Neural Decision Processors

- At-Memory Compute
- Sustained High MAC Utilization
- Native Neural Network Processing

ML Training Pipeline

Enables Production Quality
 Deep Learning Deployments

End-to-End Deep Learning Solutions

for

TinyML & Edge Al

Data Platform

- Reduces Data Collection
 Time and Cost
- Increases Model Performance

partners@syntiant.com

LIVE ONLINE November 2-5, 2021

(9-11:30 am China Standard time)

https://www.tinyml.org/event/asia-2021/

Technical Program Committee

Qualcomm Research, USA

LG Electronics CTO ALL at

Register today!

Nicholas NICOLOUDIS

Eric PAN Seeed Studio and Chaihuo

EDGE IMPULSE

More sponsorships are available: sponsorships@tinyML.org

Free event courtesy of our sponsors and strategic partners

tinyML for Good – Workshop, November 17th(7 am PDT)

Earth
Climate
Conservation

Contact: 4good@tinyML.org

THE 2021 WINNERS ARE

K+NINE

RANKED WINNERS: 2ND PLACE

WorkSafe: Computer Vision based

multiparameter monitor with

Huy Mai

RANKED WINNERS: 3RD PLACE

TinySewer - Low Power Sewer Faults Detection System

Honorable mention prize winners:

Flat Tire Detection Using Machine Vision by Bob Hammell

Smart Bird Feeder by Ariela, Anna, Audrey, Nathan, Tianlang, Haoming, Eric, Edward and Tera Guided by: Chen Feng

BHINE

More details: tinyml.org/news/tinyml-vision-challenge-winners

Next tinyML Talks

Date	Presenter	Topic / Title
Tuesday, November 16	Rehan Hafiz, Information Technology University, Lahore	SuperSlash: Unifying Design Space Exploration and Model Compression methodology for design of deep learning accelerators for TinyML

Webcast start time is 8 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

Reminders

Slides & Videos will be posted tomorrow

tinyml.org/forums

youtube.com/tinyml

Please use the Q&A window for your questions

Stefano Costa

Director of Engineering and Co-founder at Bluewind, a consulting firm for embedded systems design. He worked in industry and consulting: today he leads the R&D team at Bluewind and enables the company to design and deliver innovative software to customers. Stefano's main interests are Cybersecurity, Artificial intelligence and Functional Safety for embedded systems.

Business cases for Machine Learning at Bluewind

Human senses

Driving 130Km/h on a highway: relying on your five senses! Also for the dangerous and unespected events.

Human Machine interaction (1/2)

Terravision human interface (precursor of Google Earth), ART+COM and Deutsche Telekon 1994

2021

Human Machine interaction (2/2)

The Mother of All Demos, Douglas Engelbart 1968, ACM/IEEE

From Human to Computer

This is how

humans are asking computer to do something.

From Computer to Human

A products revolution happens when computers are programmed in order to

suggest humans what to do.

From Computer to Human

The products revolution continues with

Machine Learning on the Edge.

But: we're not trying to build algorithms that are *smarter* than humans.

Revolution: Machine Learning on the Edge

We need algorithms that:

- have higher speed
- are ubiquitous
- amplify one single sense

In other words:

build a representation starting from small building blocks

for Machine Learning on the Edge 2021

Opportunities

Why shifting machine learning to the edge (1/3)

Cybersecurity and privacy

Once, software was a part of the car. Now, software determines the value of a car

(IEEE Spectrum, June 7th, 2021)

Federated Learning with Homomorphic Encryption

for Machine Learning on the Edge 2021

Opportunities

Why shifting machine learning to the edge (2/3)

Functional Safety

There's no driver or uncertain interactions. It's simple, safe, and reliable, so you can just relax and be yourself

(Cruise - General Motors, 2021)

Cloud services can be a single point of failure for multiple unrelated devices

Why shifting machine learning to the edge (3/3)

Cloud services saturation

Due to unusually high demand, we are currently not accepting orders for custom hardware configurations. In addition, there may be delays in the delivery of your order.

(Hetzner Cloud Services, 2021)

Semiconductors shortage, high demand due to Covid, intensive calculation usage lead to cloud servers dramatic shortage

Business opportunities (1/6)

Thermal Cyclers (DNA amplifier)

- geometry
- noise
- vibration
- image
- radiofrequency

Evaluating the results of polymerase chain reaction (PCR) fast and without human intervention.

Business opportunities (2/6)

Traffic

- geometry
- noise
- vibration
- image
- radiofrequency

Realtime vehicle counting (and selecting) hearing noise.

Business opportunities (3/6)

Industrial process

- geometry
- noise
- vibration
- image
- radiofrequency

Selecting mechanical pieces out of a conveyor belt hearing noise

Business opportunities (4/6)

Elevators and automatic gates

- geometry
- noise
- vibration
- image
- radiofrequency

Detecting door movement, evaluating wearing, sensing environment for safety.

Business opportunities (5/6)

Vechicles, shuttles and trains

- geometry
- noise
- vibration
- image
- radiofrequency

Vehicle door opening with a gesture

Business opportunities (6/6)

Heating and water management

- geometry
- noise
- vibration
- image
- radiofrequency

Boiler circulator and other electric motors: classification of failures and measuring wearing rate

Thanks for listening!

- stefano.costa@bluewind.it
- Partner and Director of Engineering
- https://www.bluewind.it

Copyright Notice

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org