
“Demoing the world’s fastest inference engine for Arm
Cortex-M”

Cedric Nugteren - Plumerai

January 4, 2022

tinyML Talks Strategic Partners

2

Additional Sponsorships available – contact Olga@tinyML.org for info

mailto:Bette@tinyML.org

Dataset

Test

Device

The leading edge ML platform

www.edgeimpulse.com

Impulse

Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
January 11

Tim Callahan
Staff Software Engineer, Google

CFU Playground: Customize Your ML

Processor for Your Specific TinyML Model

Webcast start time is 8:00 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org

tinyML Summit 2022
Miniature dreams can come true…

March 28-30, 2022
Hyatt Regency San Francisco Airport

https://www.tinyml.org/event/summit-2022/

Registration will be open on December 15, 2021.

Deadline for poster submission is December 17.
The Best Product of the Year and the Best Innovation of the Year awards are open for
nominations between November 15 and February 28.

tinyML Research Symposium 2022
March 28, 2022

https://www.tinyml.org/event/research-symposium-2022

Call for papers – Submission deadline is December 17, 2021.

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/summit-2022/
https://www.tinyml.org/event/research-symposium-2022
mailto:sponsorships@tinyML.org

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Cedric Nugteren

Cedric Nugteren is a software engineer focussed

on writing efficient code for deep learning

applications. After he received his MSc and PhD

from Eindhoven University of Technology he

optimized GPU and CPU code for various

companies using C++, OpenCL and CUDA.

Then, he worked for 4 years on deep learning for

autonomous driving at TomTom, after which he

joined Plumerai where he is now writing fast

code for the smallest microcontrollers.

Cedric Nugteren - cedric@plumerai.com TinyML Webinar - January 4th, 2022

Demoing the world’s fastest

inference engine for Arm Cortex-M

You might know us from: BNNs?

25

You might know us from: Person detection?

26

Person Presence Detection

On STM32L4R9

Arm Cortex-M4 at 120 MHz

◼Latency: 474 ms

◼Peak RAM usage: 172 KiB

◼Binary size: 156 KiB

On NXP RT1060

Arm Cortex-M7 at 600 MHz

◼Latency: 61 ms

◼Peak RAM usage: 172 KiB

◼Binary size: 147 KiB

On Raspberry Pi 4

Arm Cortex-A72 at 1.5 GHz

Single core

◼Latency: 7 ms

Person No Person

Person Detection

On STM32H7B3

Arm Cortex-M7 at 280 MHz

◼Latency: 434 ms

◼Peak RAM usage: 206 KiB

◼Binary size: 895 KiB

On NXP RT1060

Arm Cortex-M7 at 600 MHz

◼Latency: 222 ms

◼Peak RAM usage: 205 KiB

◼Binary size: 895 KiB

On Raspberry Pi 4

Arm Cortex-A72 at 1.5 GHz

Single core

◼Latency: 22 ms

Example:

Smart doorbell

Example:

Smart offices

You might know us from: Our own IP core?

27

Or from: the world’s fastest Cortex-M inference?
1. What is an

inference engine?

2. Are we really

that efficient?

3. Live demo of public

benchmarking service

4. What did we do to

become so efficient?

28

0. How did we get here?

How did we get here?

Our goal: run complex

computer vision tasks on

tiny devices efficiently

Early days of Plumerai Quite soon after Last year Today

Plumerai company timeline

Need to cover the

entire stack for

high efficiency

BNNs do not only

have binarized layers,

but also INT8…

Faster models

- Better accuracy

- Lower energy usage

- Cheaper and smaller

- Room for other apps

Less RAM

The world’s

fastest INT8

inference

engine

30

1. What is an inference engine?

The machine learning flow

32Model flow image taken from: https://www.tensorflow.org/lite

Deploy INT8

quantized model

on device

Run optimized

code

The tasks of an inference engine

33

1. Execute the layers of the model in the correct order

2. Plan the activations and weights in memory efficiently

3. Provide optimized INT8 code for each layer type

(e.g. convolution, fully connected)

Memory image from: https://commons.wikimedia.org/wiki/File:Swissbit_2GB_PC2-5300U-555.jpg

An inference engine example: TFLM

34

1. Interpreter: TensorFlow Lite for Microcontrollers

3. Optimized INT8 code: ARM CMSIS-NN

2. Memory planner: TensorFlow Lite for Microcontrollers

CMSIS image taken from: https://www.keil.com/pack/doc/CMSIS/NN/html/

2. Are we really that efficient?

A closer look at the results

36

What most people are using

Our inference engine

Also tested: microTVM, but ran out of memory
No tricks: no binarization or pruning,

accuracy remains the same in this table

Just good on MobileNetV2?

37

More off-the-shelf models

38

On Cortex-M4

Average RAM

reduction factor: 1.42x

Average speed-up

factor: 1.60x

More off-the-shelf models

39

On Cortex-M7

Average RAM

reduction factor: 1.45x

Average speed-up

factor: 1.53x

Remember: accuracy remains the same,

only speed and memory requirements change

A closer look at the MLPerf Tiny models

40

On Cortex-M7:

- 2.0x RAM reduction

- 1.4x speed-up

A
n

o
m

a
ly

d

e
te

c
ti
o
n

K
e

y
w

o
rd

S
p

o
tt

in
g

Im
a

g
e

C
la

s
s
if
ic

a
ti
o

n

V
is

u
a

l
w

a
k
e

w
o

rd
s

A
n

o
m

a
ly

d

e
te

c
ti
o
n

K
e

y
w

o
rd

S
p

o
tt

in
g

Im
a

g
e

C
la

s
s
if
ic

a
ti
o

n

V
is

u
a

l
w

a
k
e

w
o

rd
s

On Cortex-M4:

- 2.0x RAM reduction

- 1.6x speed-up

3. Live demo of

public benchmarking service

Public benchmarking service: try it yourself!

Visit https://plumerai.com/benchmark to try it with your own model

42

Any model that runs with

TFLM is supported!

Note: M4 & M7 and ST boards are just examples:

our inference engine runs across many platforms

https://plumerai.com/benchmark

4. What did we do to

become so efficient?

How to beat the competition?

44

1. Better memory planning
2. Optimized and model-specific

INT8 code for Cortex-M

Memory image from: https://commons.wikimedia.org/wiki/File:Swissbit_2GB_PC2-5300U-555.jpg

Memory planning: a (rotated) game of Tetris

45

Each Tetris block is a tensor

RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

Objective of the game:

Use as little RAM as possible

Image taken from: https://commons.wikimedia.org/wiki/File:Gameboy.jpg

Memory planning for an example model

46

RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C D

E

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Mem requirement:

~750KB

A much better memory plan

47

RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C D

E

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Previous: ~750KB

Now: ~500KB

D

E

Even better: lower granularity planning

48

RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C
D1

E2

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Previous: ~500KB

Now: ~450KB

D2

E1

Memory planning at Plumerai: summary

A
n

o
m

a
ly

d

e
te

c
ti
o
n

K
e

y
w

o
rd

S
p

o
tt

in
g

Im
a

g
e

C
la

s
s
if
ic

a
ti
o

n

V
is

u
a

l
w

a
k
e

w
o

rd
s

Lower RAM usage:

1. Smarter tensor placement

2. Lower granularity planning

RAM savings highly model dependent!

49

Optimized INT8 code for speed

50

Optimized Conv2D code:

im2col + GEMM

Optimized code for

other op (e.g. ADD):

Optimized code for special

cases, e.g. 1x1 Conv2D

Example code optimizations:

● Hand-written assembly (if needed)

● Specialization for Cortex-M4 or M7 capabilities

● Register-count aware optimisations

● Template-based loop unrolling

● Weight memory layout pre-processing

Model-agnostic - vs - model-specific

Image taken from: https://tvm.apache.org/docs/tutorial/introduction.html

Compiled

binary

Optimized

code

Model data

Model

interpreter

Code running

on device

Example: (micro)

Compiled

binary

Optimized

code
Model data

Code running

on device

51

Model-specific code generation

52From the Godbolt compiler explorer at: https://godbolt.com

Unrolled code with only

add, load and stores

Generic code with

compare and branch

instructions

Better speed at Plumerai: summary

A
n

o
m

a
ly

d

e
te

c
ti
o
n

K
e

y
w

o
rd

S
p

o
tt

in
g

Im
a

g
e

C
la

s
s
if
ic

a
ti
o

n

V
is

u
a

l
w

a
k
e

w
o

rd
s

Lower latency, better speed:

1. Optimized code for Cortex-M

2. Model-specific code generation

Latency savings dependent on the

layers and layer configurations

53

You’ve got mail!

5. Conclusion

The world’s fastest Cortex-M inference

55

What can Plumerai mean for you?

56

Public benchmarking service: try it yourself!

Visit plumerai.com/benchmark to try it with your own model

Contact hello@plumerai.com for help or other questions

57

https://plumerai.com/benchmark
mailto:hello@plumerai.com

Copyright Notice

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

