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youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Cedric Nugteren

Cedric Nugteren is a software engineer focussed 

on writing efficient code for deep learning 

applications. After he received his MSc and PhD 

from Eindhoven University of Technology he 

optimized GPU and CPU code for various 

companies using C++, OpenCL and CUDA. 

Then, he worked for 4 years on deep learning for 

autonomous driving at TomTom, after which he 

joined Plumerai where he is now writing fast 

code for the smallest microcontrollers.



Cedric Nugteren - cedric@plumerai.com TinyML Webinar - January 4th, 2022

Demoing the world’s fastest 

inference engine for Arm Cortex-M



You might know us from: BNNs?
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You might know us from: Person detection?
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Person Presence Detection

On STM32L4R9

Arm Cortex-M4 at 120 MHz

◼Latency: 474 ms

◼Peak RAM usage: 172 KiB

◼Binary size: 156 KiB

On NXP RT1060

Arm Cortex-M7 at 600 MHz

◼Latency: 61 ms

◼Peak RAM usage: 172 KiB

◼Binary size: 147 KiB

On Raspberry Pi 4

Arm Cortex-A72 at 1.5 GHz

Single core

◼Latency: 7 ms

Person No Person

Person Detection

On STM32H7B3

Arm Cortex-M7 at 280 MHz

◼Latency: 434 ms

◼Peak RAM usage: 206 KiB

◼Binary size: 895 KiB

On NXP RT1060

Arm Cortex-M7 at 600 MHz

◼Latency: 222 ms

◼Peak RAM usage: 205 KiB

◼Binary size: 895 KiB

On Raspberry Pi 4

Arm Cortex-A72 at 1.5 GHz

Single core

◼Latency: 22 ms

Example:

Smart doorbell

Example:

Smart offices



You might know us from: Our own IP core?
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Or from: the world’s fastest Cortex-M inference?
1. What is an 

inference engine?

2. Are we really 

that efficient?

3. Live demo of public 

benchmarking service

4. What did we do to 

become so efficient?

28



0. How did we get here?



How did we get here?

Our goal: run complex 

computer vision tasks on 

tiny devices efficiently

Early days of Plumerai            Quite soon after                         Last year                            Today

Plumerai company timeline

Need to cover the 

entire stack for 

high efficiency

BNNs do not only 

have binarized layers, 

but also INT8…

Faster models

- Better accuracy

- Lower energy usage

- Cheaper and smaller

- Room for other apps

Less RAM

The world’s 

fastest INT8 

inference 

engine

30



1. What is an inference engine?



The machine learning flow 

32Model flow image taken from: https://www.tensorflow.org/lite

Deploy INT8 

quantized model 

on device

Run optimized

code



The tasks of an inference engine
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1. Execute the layers of the model in the correct order

2. Plan the activations and weights in memory efficiently

3. Provide optimized INT8 code for each layer type

(e.g. convolution, fully connected)

Memory image from: https://commons.wikimedia.org/wiki/File:Swissbit_2GB_PC2-5300U-555.jpg



An inference engine example: TFLM
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1. Interpreter: TensorFlow Lite for Microcontrollers

3. Optimized INT8 code: ARM CMSIS-NN

2. Memory planner: TensorFlow Lite for Microcontrollers

CMSIS image taken from: https://www.keil.com/pack/doc/CMSIS/NN/html/



2. Are we really that efficient?



A closer look at the results
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What most people are using

Our inference engine

Also tested: microTVM, but ran out of memory
No tricks: no binarization or pruning,

accuracy remains the same in this table



Just good on MobileNetV2?
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More off-the-shelf models
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On Cortex-M4

Average RAM 

reduction factor: 1.42x

Average speed-up 

factor: 1.60x



More off-the-shelf models
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On Cortex-M7

Average RAM 

reduction factor: 1.45x

Average speed-up 

factor: 1.53x

Remember: accuracy remains the same,

only speed and memory requirements change



A closer look at the MLPerf Tiny models
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On Cortex-M7:

- 2.0x RAM reduction

- 1.4x speed-up
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On Cortex-M4:

- 2.0x RAM reduction

- 1.6x speed-up



3. Live demo of

public benchmarking service



Public benchmarking service: try it yourself!

Visit https://plumerai.com/benchmark to try it with your own model
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Any model that runs with

TFLM is supported!

Note: M4 & M7 and ST boards are just examples: 

our inference engine runs across many platforms

https://plumerai.com/benchmark


4. What did we do to

become so efficient?



How to beat the competition?
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1. Better memory planning
2. Optimized and model-specific

INT8 code for Cortex-M

Memory image from: https://commons.wikimedia.org/wiki/File:Swissbit_2GB_PC2-5300U-555.jpg



Memory planning: a (rotated) game of Tetris
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Each Tetris block is a tensor

RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

Objective of the game:

Use as little RAM as possible

Image taken from: https://commons.wikimedia.org/wiki/File:Gameboy.jpg



Memory planning for an example model
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RAM size →

T
im

e
 (la
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e
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x
e
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tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C D

E

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Mem requirement: 

~750KB



A much better memory plan

47

RAM size →

T
im

e
 (la

y
e
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x
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u
tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C D

E

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Previous: ~750KB

Now: ~500KB



D

E

Even better: lower granularity planning
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RAM size →

T
im

e
 (la

y
e
r e

x
e
c
u
tio

n
) →

0 KB 640 KB
Conv2D

Conv2D

DWConv

Add

Dense

A

B

C
D1

E2

F

A

B

C

D

E

F (simplified view: only activations are planned here, not weights)

Add

G

G

Conv2D

Conv2D

DWConv

Add

Add

Dense

Previous: ~500KB

Now: ~450KB

D2

E1



Memory planning at Plumerai: summary
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Lower RAM usage:

1. Smarter tensor placement

2. Lower granularity planning

RAM savings highly model dependent!
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Optimized INT8 code for speed

50

Optimized Conv2D code:

im2col + GEMM

Optimized code for 

other op (e.g. ADD):

Optimized code for special 

cases, e.g. 1x1 Conv2D

Example code optimizations:

● Hand-written assembly (if needed)

● Specialization for Cortex-M4 or M7 capabilities

● Register-count aware optimisations

● Template-based loop unrolling

● Weight memory layout pre-processing



Model-agnostic - vs - model-specific

Image taken from: https://tvm.apache.org/docs/tutorial/introduction.html

Compiled

binary

Optimized 

code

Model data

Model

interpreter

Code running

on device

Example: (micro)

Compiled

binary

Optimized 

code
Model data

Code running

on device
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Model-specific code generation

52From the Godbolt compiler explorer at: https://godbolt.com

Unrolled code with only 

add, load and stores

Generic code with 

compare and branch 

instructions



Better speed at Plumerai: summary
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Lower latency, better speed:

1. Optimized code for Cortex-M

2. Model-specific code generation

Latency savings dependent on the 

layers and layer configurations
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You’ve got mail!



5. Conclusion



The world’s fastest Cortex-M inference
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What can Plumerai mean for you?
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Public benchmarking service: try it yourself!

Visit plumerai.com/benchmark to try it with your own model

Contact hello@plumerai.com for help or other questions
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https://plumerai.com/benchmark
mailto:hello@plumerai.com
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