tinyML. Talks

Enabling Ultra-low Power Machine Learning at the Edge

"Analysis of ECG Data by Energy Efficient Decision Trees on a Reconfigurable ASIC" Tobias Peikenkamp - Hahn-Schickard

July 7, 2021

www.tinyML.org

U

TALKS webcast

tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner

Deeplite

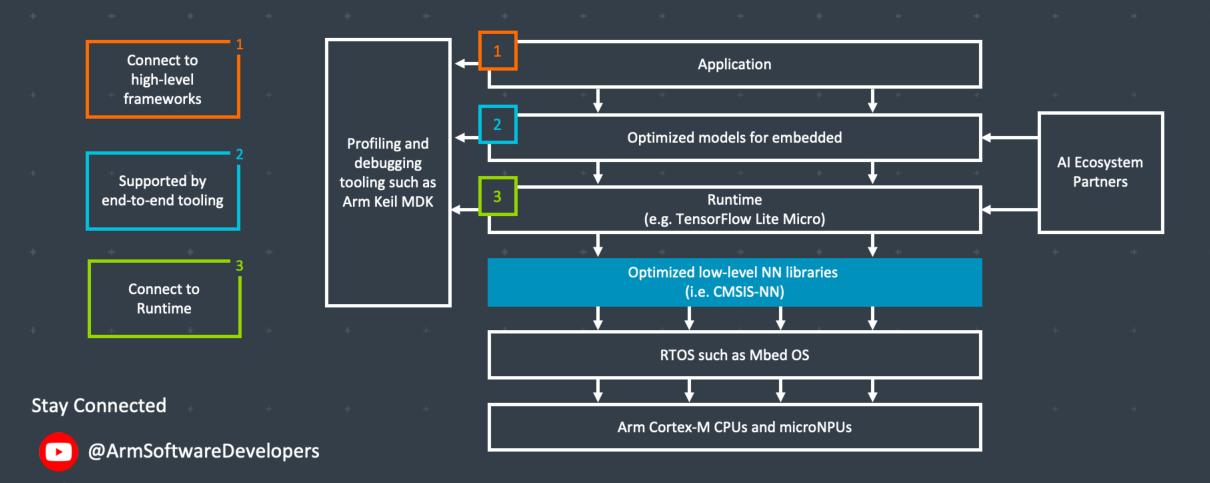
tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner

tinyML Strategic Partner



tinyML Strategic Partner

Additional Sponsorships available – contact Olga@tinyML.org for info

Arm: The Software and Hardware Foundation for tinyML

Ø @ArmSoftwareDev

Resources: developer.arm.com/solutions/machine-learning-on-arm

4 © 2020 Arm Limited (or its affiliates)

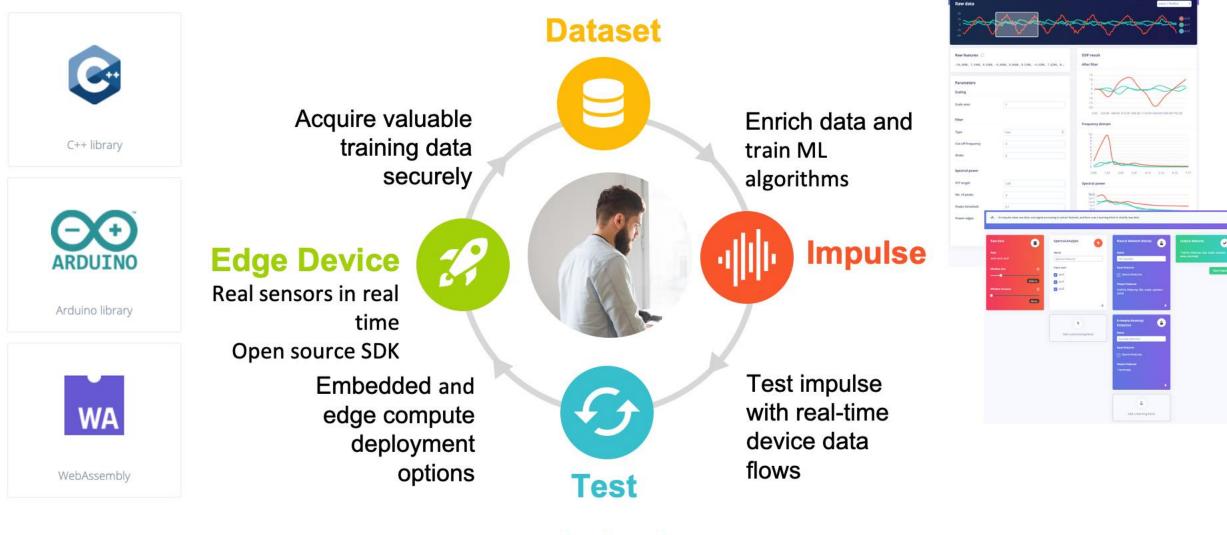
+ + + +

arm

WE USE AI TO MAKE OTHER AI FASTER, SMALLER AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to <200KB with **little to no drop in accuracy** for inference on resource-limited MCUs

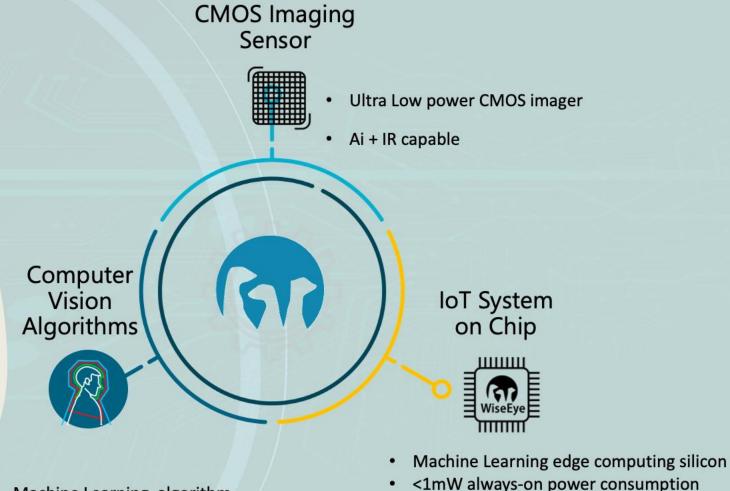
Reduce model optimization trial & error from weeks to days using Deeplite's **design space exploration**



Deploy more models to your device without sacrificing performance or battery life with our **easy-to-use software**

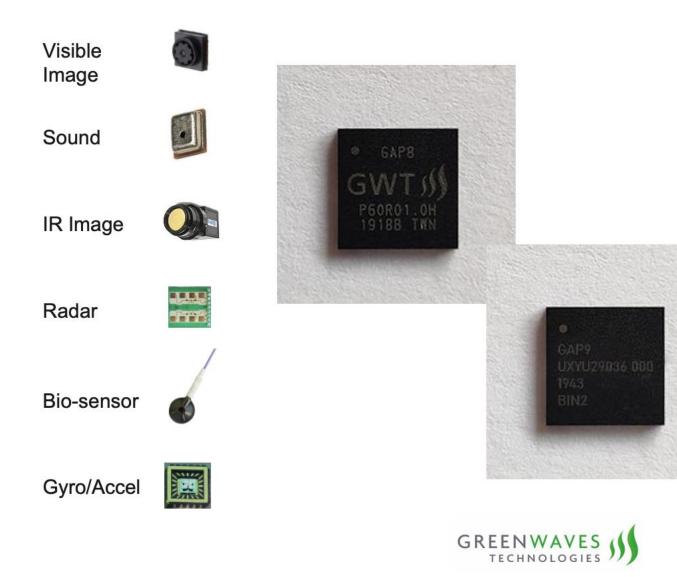
BECOME BETA USER bit.ly/testdeeplite

TinyML for all developers

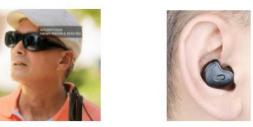

www.edgeimpulse.com

The Eye in IoT Edge Al Visual Sensors

info@emza-vs.com

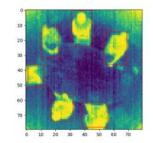


Computer Vision hardware accelerators


- Machine Learning algorithm
- <1MB memory footprint
- Microcontrollers computing power
- Trained algorithm
- Processing of low-res images
- Human detection and other classifiers

Enabling the next generation of Sensor and Hearable products

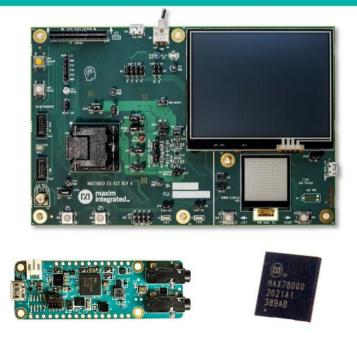
to process rich data with energy efficiency


Wearables / Hearables

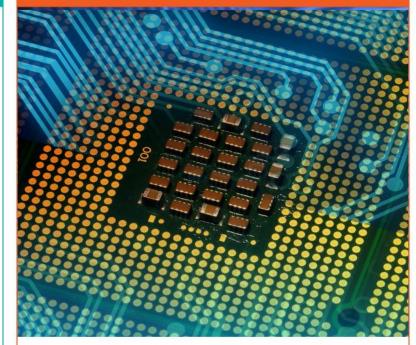
Battery-powered consumer electronics

IoT Sensors

Adaptive AI for the Intelligent Edge


Latentai.com

Maxim Integrated: Enabling Edge Intelligence


Advanced AI Acceleration IC

The new MAX78000 implements AI inferences at low energy levels, enabling complex audio and video inferencing to run on small batteries. Now the edge can see and hear like never before.

www.maximintegrated.com/MAX78000

Low Power Cortex M4 Micros

Large (3MB flash + 1MB SRAM) and small (256KB flash + 96KB SRAM, 1.6mm x 1.6mm) Cortex M4 microcontrollers enable algorithms and neural networks to run at wearable power levels.

www.maximintegrated.com/microcontrollers

Sensors and Signal Conditioning

Health sensors measure PPG and ECG signals critical to understanding vital signs. Signal chain products enable measuring even the most sensitive signals.

www.maximintegrated.com/sensors

Qeexo AutoML

Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

Key Features

- Supports 17 ML methods:
 - Multi-class algorithms: GBM, XGBoost, Random
 Forest, Logistic Regression, Gaussian Naive Bayes,
 Decision Tree, Polynomial SVM, RBF SVM, SVM, CNN,
 RNN, CRNN, ANN
 - Single-class algorithms: Local Outlier Factor, One Class SVM, One Class Random Forest, Isolation Forest
- Labels, records, validates, and visualizes time-series sensor data
- On-device inference optimized for low latency, low power consumption, and small memory footprint applications
- Supports Arm[®] CortexTM- M0 to M4 class MCUs

End-to-End Machine Learning Platform

MODE FEATURI MODEL MODEL CONVERSION ETER SPECIFIC MI EXTRACTION SELECTION VALIDATION REPROCESSING PTIMIZATION AND SELECTION (E.G. TO C) AutoML 🐞 AUTOMATED COLLECT/ UPLOAD DEPLOY/ DOWNLOAD **DEFINE PROJECT** SELECT SENSORS AND MACHINE LEARNING E.G. CLASSIFICATION TARGET HARDWARE DATA **ML PACKAGE**

For more information, visit: www.qeexo.com

Target Markets/Applications

- Industrial Predictive Maintenance
 Automotive
- Smart Home
- Wearables IoT

Mobile

Qualcorm Al research

Advancing Al research to make efficient Al ubiquitous

Power efficiency

Personalization E

Model design, compression, quantization, algorithms, efficient hardware, software tool Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning

Robust learning through minimal data, unsupervised learning, on-device learning

A platform to scale Al across the industry

Perception Object detection, speech

recognition, contextual fusion

Reasoning Scene understand

Scene understanding, language understanding, behavior prediction

Action

Reinforcement learning for decision making

Cloud

Edge cloud

IoT/IIoT

Automotive

Mobile

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Add Advanced Sensing to your Product with Edge AI / TinyML

https://reality.ai

info@reality.ai

✓@SensorAl in Reality Al

Pre-built Edge Al sensing modules, plus tools to build your own

Reality AI solutions

Prebuilt sound recognition models for indoor and outdoor use cases

Solution for industrial anomaly detection

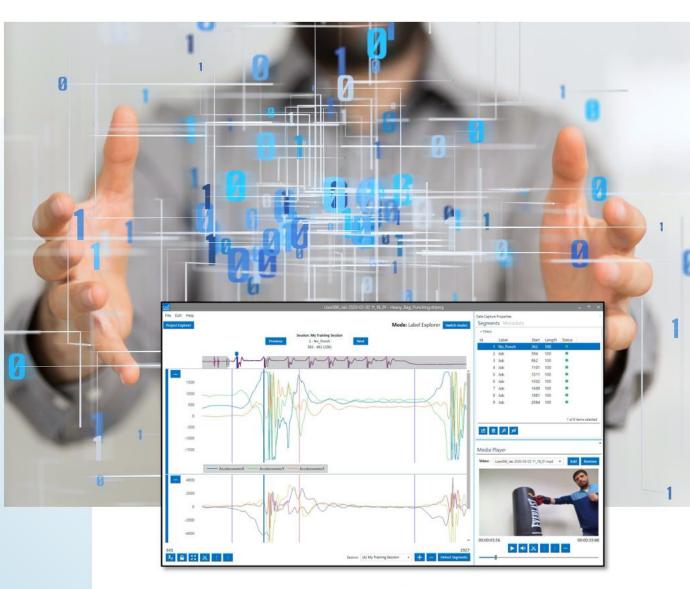
Pre-built automotive solution that lets cars "see with sound"

Reality AI Tools[®] software

Build prototypes, then turn them into real products

Explain ML models and relate the function to the physics

Optimize the hardware, including sensor selection and placement



Build Smart IoT Sensor Devices From Data

SensiML pioneered TinyML software tools that auto generate AI code for the intelligent edge.

- End-to-end AI workflow
- Multi-user auto-labeling of time-series data
- Code transparency and customization at each step in the pipeline

We enable the creation of productiongrade smart sensor devices.

sensiml.com

SynSense

SynSense builds sensing and inference hardware for ultra-lowpower (sub-mW) embedded, mobile and edge devices. We design systems for real-time always-on smart sensing, for audio, vision, IMUs, bio-signals and more.

https://SynSense.ai

SYNTIANT

Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge devices. Syntiant's chip solutions merge deep learning with semiconductor design to produce ultra-low-power, high performance, deep neural network processors. These network processors enable always-on applications in battery-powered devices, such as smartphones, smart speakers, earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word, command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. Syntiant was recently named a <u>CES® 2021 Best of Innovation Awards Honoree</u>, <u>shipped over 10M</u> <u>units worldwide</u>, and <u>unveiled the NDP120</u> part of the NDP10x family of inference engines for low-power applications.

www.syntiant.com

FOUNDATION

Focus on:

(i) developing new use cases/apps for tinyML vision; and (ii) promoting tinyML tech & companies in the developer community

Submissions accepted until August 20th, 2021 Winners announced on September 1, 2021 (\$6k value) Sponsorships available: *sponsorships@tinyML.org*

Next tinyML Talks

Date	Presenter	Topic / Title
Tuesday, July 13	Siddharth Tallur, Associate Professor, Electrical Engineering, IIT Bombay	Edge-compatible machine learning algorithms for vibration condition based monitoring of machines

Webcast start time is 8 am Pacific time

Please contact <u>talks@tinyml.org</u> if you are interested in presenting

U TALKS webcast

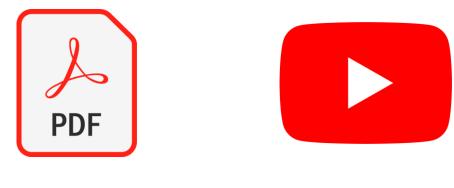
Local Committee in Germany

Alexis Veynachter,

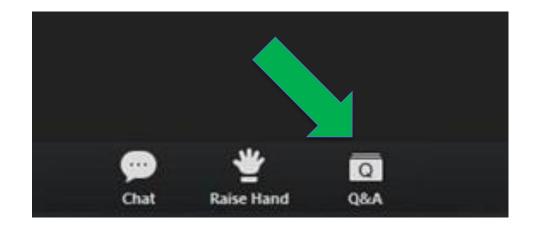
Master Degree in Control Engineering, Senior Field Application Engineer Infineon 32bits MCUs for Sensors, Fusion & Control

Carlos Hernandez-Vaquero Software Project Manager, IoT devices Robert Bosch

Prof. Dr. Daniel Mueller-Gritschneder Interim Head - Chair of Real-time Computer Systems Group Leader ESL - Chair of Electronic Design Automation Technical University of Munich



Marcus Rüb Researcher in the field of TinyML Hahn-Schickard


Reminders

Slides & Videos will be posted tomorrow

tinyml.org/forums youtube.com/tinyml

Please use the Q&A window for your questions

Tobias Peikenkamp

Tobias Peikenkamp studied computer science at the Carl von Ossietzky University Oldenburg with the focus on autonomous systems, machine learning and Artificial Intelligence. After completing the Master of Science in 2019, he started working at the AI department of Hahn-Schickard where his work involved analysis of sensor data and the application of decision tree ensembling techniques.

Visions to Products

Analysis of ECG Data by Energy Efficient Decision Trees on a Reconfigurable ASIC

Tobias Peikenkamp

7.7.2021

Hahn-Schickard

Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.

39 M€ revenue (2020)

- 9.5 M€ contracts with industry
- 6.9 M€ institutional funding BW

256 employees (2020)

Member of the Innovation Alliance Baden-Württemberg

Tobias Peikenkamp - 07.07.2021 - tinyML

Institute of Micro Assembly Technology Stuttgart (ISO 9001:2015)

Institute of Microanalysis Systems Freiburg (ISO 13485:2015)

Institute of Micro and Information Technology Villingen-Schwenningen (ISO 9001:2015)

Institute of Microanalysis Systems Ulm

Artificial Intelligence (AI)

Focus

- Embedded AI
- AI and privacy

Projects

- Industrial Robot Interaction with AI (FMER)
- Self learning AI radio location system
- Skin cancer diagnosis
- AI Hardware accelerator
- AI-Trainer

Free AI offers for German SMEs

Our offer for small and medium-sized enterprises (SMEs):

- On-site visits to develop suitable fields of application for AI
- AI trainings
- Al events
- Al development projects for your application

Bundesministerium für Wirtschaft

GRATE

Are you a German SME and interested in AI?

For small and medium-sized enterprises (SMEs) in the Schwarzwald-Baar-Heuberg district:

- AI Working Groups & Expert Tables
- AI Information Series
- AI Co-Working Spaces & Prototyping Trainings
- AI Consulting

Dates:

08.07.21 KI for Predictive Maintenance

Software Solutions / Artificial Intelligence – Dr. Daniel Gaida

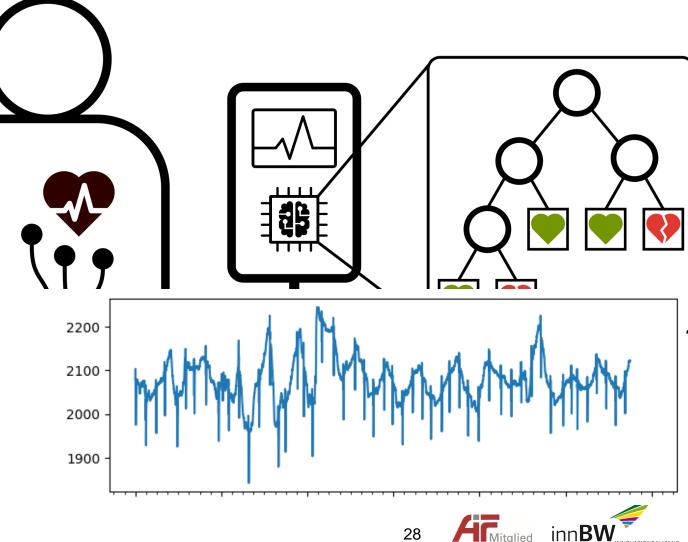
26

Are you a SME from Baden-Württemberg and interested in TinyML?

Within the scope of QuickChecks, we analyse whether and how your application-related problem can be supported by the use of Edge AI.

We help you to outline the solution path, analyse your current status and help you select the resources and accompany you during the first technical implementation.

Apply now for a free QuickCheck -> <u>quickcheck@ims-chips.de</u>


Pilote Innovation Initiative "KI-Sprung"

Contest held by FMER Classification on atrial fibrillation Energy efficiency Accuracy "Innovativeness" 500 data sets 2 minutes of ECG data 512 Hz Clean data

- Low noise / disturbance
- Distinct classes
- Participation in 22nm category
- End December 2020
- Win awarded in March 2021

Concept Decision Tree Ensemble

Metrics & Results

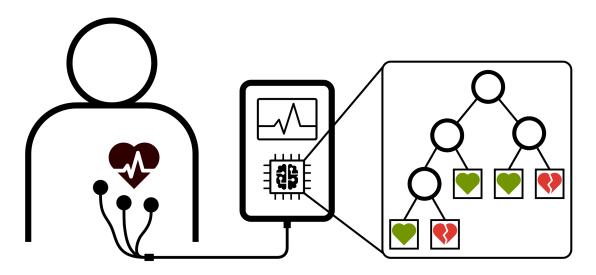
Contest criteria

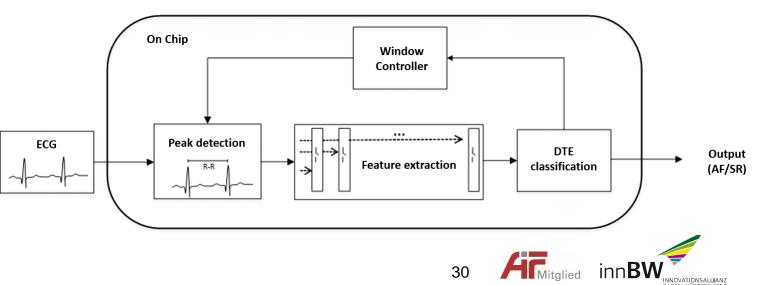
- Min. Recall 90%
- Max. Fallout 20%
- Minimum energy for classification
 - Focus on recognition of sick patients
- Achieved results
 - ➤ Recall 92.7%
 - Fallout 14,7%
 - 42 nJ per 2 minute ECG-dataset

		Ground Trut	
		sick	healthy
Prediction	Sick	True Positive (TP)	False Positive (FP)
	Healthy	False Negative (FN)	True Negative (TN)

Ground Truth

	Prediction Sinus Rhythm	Prediction Atrial Fibrillation
Sinus Rhyth	1209	209
Atrial Fibrillation	103	1315




GEnERIC

Concept Decision Tree

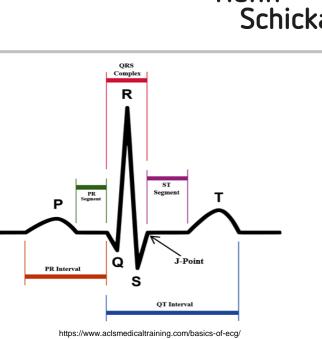
- Classical machine learning
 - Processing features, not raw data
 - Multi stage procedure
- Offers potential for optimization
 - Software-Hardware implementation feedback
- Enables utilization of problem specific expertise
- Classification is understandable

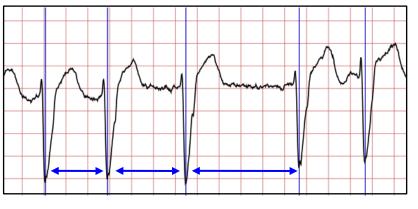
Feature analysis

Wavelet transformation

- Achieved required accuracy
- Very costly
- Huge featureset (100~ Features)
- Big ensembles necessary (300 Trees)

Feature calculation on raw data

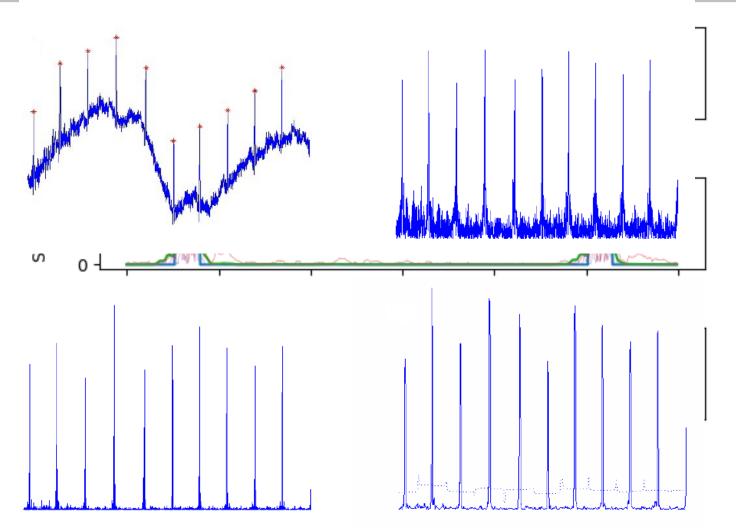

- Features in time and frequency domain
- Could not achieve required accuracy
- Some kind of (cheap) preprocessing necessary


Waveform characterisitics

Feature definition

- Existence of P-wave
- Width of QRS-complex
- Flickering
- No promising initial results

Features defined solely based on RRintervals



Hahn Schickard

Peak Detection

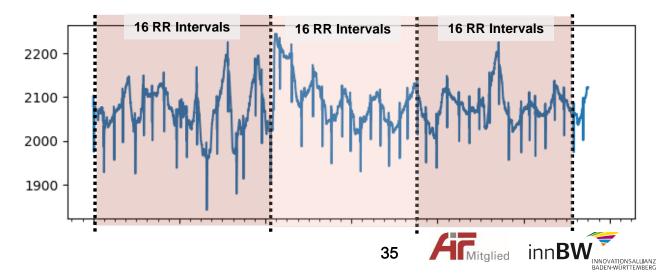
Triangle Template Matching

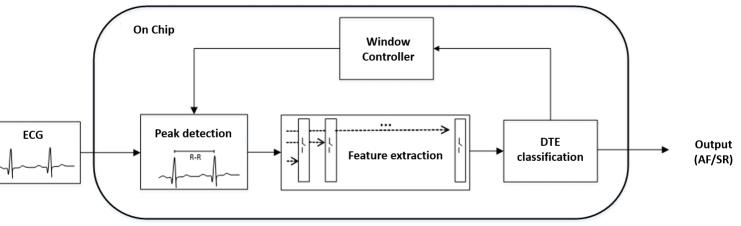
- Highpass filter
- Template matching
- Lowpass filter
- Moving average
- Moving average and lowpass filtered data define search window

Nguyen, Tam, et al. "Low resource complexity R-peak detection based on triangle template matching and moving average filter." *Sensors* 19.18 (2019): 3997.

Optimization

Two overarching goals


- Reaching specified precision targets
- Minimizing energy cost of hardware


Bounded optimization problem

- Define cost function for hardware energy
 - Minimize cost function bounded by precision targets

Windowing

- Sequential classification on data windows containing 16 RR-intervals
- Enables termination on recognized fibrillation event

Optimization

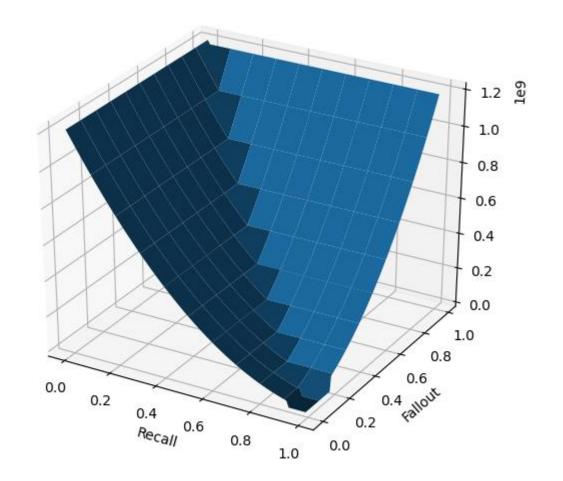
Energy cost estimations

- FPGA simulation (Vivado)
 - Feature calculation
 - Decision tree ensemble

Optimization function

- Minimize energy costs
- Assign high cost to solutions not fullfilling recognition requirements

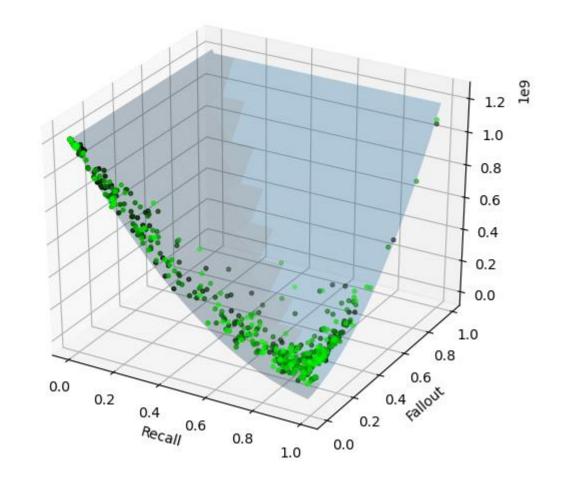
Energy Analysis						
IDX	Top Level	Modules	Sub-Modules	Dynamic Power (W) SAIF	CLK Cycles	Energy (nJ / feature)
1	fe_top_level	XXXXXXXXXXXX	XXXXXXXXXXX	0,059937082	XXXXXXXXXXX	XXXXXXXXXXXX
2		fe (fe)	XXXXXXXXXX	0,030463446	XXXXXXXXXXX	XXXXXXXXXXX
3		XXXXXXXXXXX	skew_interval (fe_skew)	0,004204817	469	19,72059228
4		XXXXXXXXXXX	kurtosis_interval (fe_kurtosis)	0,004177229	469	19,59120626
5		XXXXXXXXXXX	fe_entropy (fe_entropy)	0,003984076	294	11,71318199
6		XXXXXXXXXXX	variance_interval (fe_variance)	0,002611476	177	4,62231169
7		XXXXXXXXXXX	fe_heart_rate (fe_heart_rate)	0,002534213	178	4,510899158
8		XXXXXXXXXXX	mean_interval (fe_mean)	0,002000995	177	3,541761115
9		XXXXXXXXXXX	fanofactor_interval (fe_fanofactor)	0,001934599	131	2,534324405
10		XXXXXXXXXXX	xu_3_interval (fe_xu_3)	0,001690764	30	0,507229124
11		XXXXXXXXXXX	xu_4_interval (fe_xu_4)	0,001680682	30	0,504204689
12		XXXXXXXXXXX	xu_2_interval (fe_xu_2)	0,001633506	30	0,490051776
13		XXXXXXXXXXXX	xu_interval (fe_xu)	0,001492237	2	0,029844732
14		XXXXXXXXXXX	interval_shift_reg (n_shift_reg)	0,001417921	XXXXXXXXXXXX	XXXXXXXXXXXX
15		XXXXXXXXXXXX	minmax_interval_diff (fe_minmax_diff)	0,000679171	30	0,203751441
16		XXXXXXXXXXXX	std_interval (fe_std)	0,000232727	18	0,041890837
17		XXXXXXXXXXXX	median_interval (fe_median)	0,000189037	30	0,056711237
18		fe_diff (fe_diff)	XXXXXXXXXXXX	0,028960742	XXXXXXXXXXXX	XXXXXXXXXXXX
19		XXXXXXXXXXXX	<pre>skew_interval_diff (fe_skew_diff)</pre>	0,004588762	469	21,52129518
20		XXXXXXXXXXXX	kurtosis_interval_diff (fe_kurtosis_diff)	0,004193011	469	19,66522037
21		XXXXXXXXXXXX	fe_entropy_diff (fe_entropy_diff)	0,004019144	294	11,81628197
22		XXXXXXXXXXXX	variance_interval_diff (fe_variance_diff)	0,002897032	177	5,127745941
23		XXXXXXXXXXXX	mean_interval_diff (fe_mean_diff)	0,001994006	177	3,529391214
24		XXXXXXXXXXXX	fanofactor_interval_diff (fe_fanofactor_diff)	0,001848994	131	2,422182061
25		XXXXXXXXXXXX	<pre>xu_4_interval_diff (fe_xu_4_diff)</pre>	0,001689118	30	0,506735395
26		XXXXXXXXXXXX	<pre>xu_3_interval_diff (fe_xu_3_diff)</pre>	0,001643902	30	0,493170507
27		XXXXXXXXXXXX	<pre>xu_2_interval_diff (fe_xu_2_diff)</pre>	0,001635007	30	0,490502093
28		XXXXXXXXXXXX	<pre>xu_interval_diff (fe_xu_diff)</pre>	0,001492217	2	0,029844348
29		XXXXXXXXXXXX	interval_diff_shift_reg (n_shift_reg)	0,001417915	XXXXXXXXXXXX	XXXXXXXXXXXX
30		XXXXXXXXXXXX	interval_difference (fe_interval_diff)	0,00043447	3	0,013034098
31		XXXXXXXXXXXXX	fe_nn_diff_adapt (fe_adapt_nn_diff)	0,000300961	29	0,087278604
32		XXXXXXXXXXXX	std_interval_diff (fe_std_diff)	0,000232726	30	0,069817717
33		XXXXXXXXXXXX	median_interval_diff (fe_median_diff)	0,000148008	18	0,026641468
34		XXXXXXXXXXXX	fe_nn_diff_50 (fe_nn_diff)	0,000141855	30	0,042556638
35		XXXXXXXXXXXX	fe_nn_diff_25 (fe_nn_diff)	0,000141842	30	0,042552657
36		XXXXXXXXXXXX	fe_nn_diff_100 (fe_nn_diff)	0,000141771	30	0,042531396
37		fe_ctrl_unit (fe_ctrl_unit)		9,77142E-05	XXXXXXXXXXXX	XXXXXXXXXXXXX
Power Estimation Confidence Level	Medium					
Tclk	10	ns				
Frequency	100	MHz				
window length	15					
interval bitwidth	32					
feature bitwidth	32					
sum bitwidth	36					
n_bins	10					
window_length_bitwidth	3					


Cost function

Assign high cost to "bad" solutions

- Recall <= 90%</p>
- Fallout >= 20%

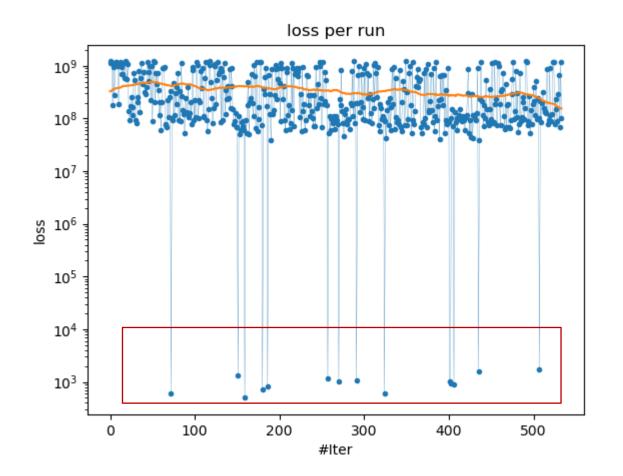
Assign no cost to good solutions


- Recall > 90%
- Fallout < 20%</p>

Optimization

Usage of hyperopt library

- https://github.com/hyperopt/hyperopt
- Allows definition of arbitrary cost functions
- Min(Cost + Energy)


Optimization results

Sparse solutions found

- 70~ Parameters
 Complex parameterspace
- Parameters of peak detection have huge impact
- Small amount of iterations

Used solutions as base for further improvements

- Verification of parameter selection
 Features
 - Decision tree ensemble
- Improvement of peak detection

Feature Selection

Energy

[nJ /

Feature]

0,04

0.04

Energy-

Effiyiency

1,00

1.00

Importance

1,00

0.91

Derivation of several features based on RR-intervals

	Analysis o	Эf	different features
--	------------	----	--------------------

		23 NIN_U	0,91	1,00	2,5	0,04
Sot 7 footures selected		100 NN_d	0,91	1,00	2,50	0,04
Set 7 features selected		Adaptive NN_d	0,91	1,00	2,5	0,08
Features based RR-intervals and difference		Median	0,25	1,00	0,68	0,06
of successive RR-intervals		Variance	0,29	0,79	0,8	4,62
		MinMaxDiff	0,10	0,98	0,27	0,50
		Fano Factor_d	0,09	0,89	0,25	2,42
Merkmal	Beschreibung	Entropy_d	0,51	0,45	1,40	11,82
Min-Max Difference	Max(Intervallvektor) - Min(Intervallvektor)	Fano Factor	0,07	0,88	0,2	2,53
		Heartrate	0,02	0,79	0,05	4,51
Entropie	Entropy of difference of successive intervals	Entropy	0,33	0,46	0,9	11,71
50 nn_d	#(Difference of intervals > 50 ms)	Variance_d	0,02	0,76	0,05	5,13
25 nn_d	#(Difference of intervals > 25 ms)	Skew	0,24	0,08	0,65	19,72
		Kurtosis_d	0,11	0,09	0,30	19,67
100 nn_d	#(Difference of intervals > 100 ms)	Kurtosis	0,05	0,09	0,15	19,59
Adapt_nn_d	#(Difference of intervals > 12.5% * Mean(Difference of Intervals))	Skew_d	0,02	0,00	0,05	21,52
Entropie_d	Entropy of intervals					
	0.0 0.5 1.0 1.5 2.0 2.5 3.0					

Feature

50 NN_d

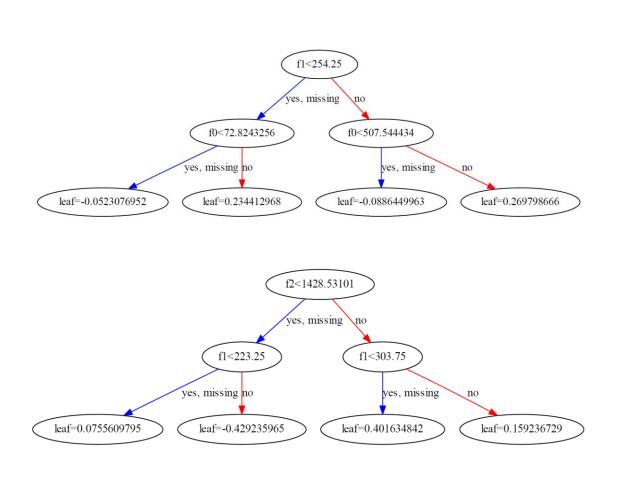
25 NN d

0.0 0.5 1.0 1.5 2.0 2.5 3.0 mean(|SHAP value|) (average impact on model output magnitude)

Importance

2,75

2.5


Classification

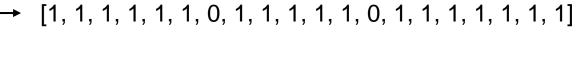
Decision tree ensemble

- Multiple decision trees
- Sum of leafs defines classification result
- Gradient boosting algorithm

Parameters

- 20 Trees
- Depth of 3
- 10 Bins

Voting

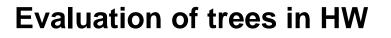


Each tree has a binary vote (0,1)

- Each vote gets multiplied by some tree weight
- Sum of all votes
- If votes surpass certain threshold
 Atrial fibrillation
 - Else: Sinus Rhythm

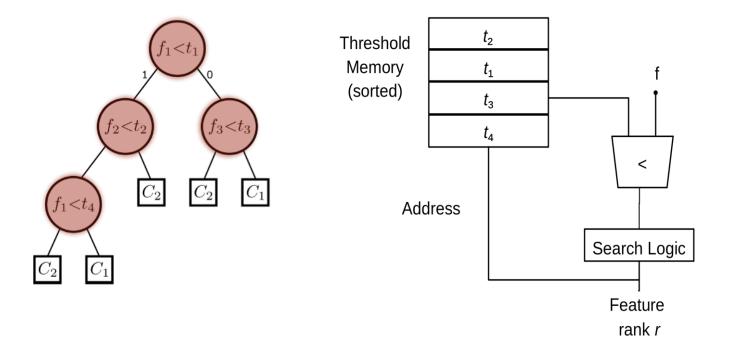
Average of absolute leaf values determines tree weight

Large leaf values have huge impact on classification



[10, 8, 7, 7, 5, 6, 6, 4, 5, 4, 4, 3, 4, 3, 3, 2, 3, 3, 5, 2]

Classification in Hardware

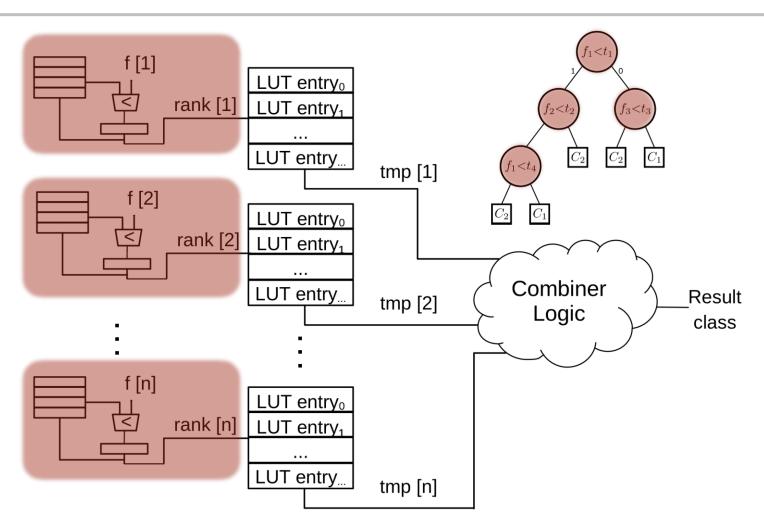


- Variable structure
- Complex interconnect
- Redundant comparisons

Rank instead of feature value

- Fewer comparisons
- Lower data width

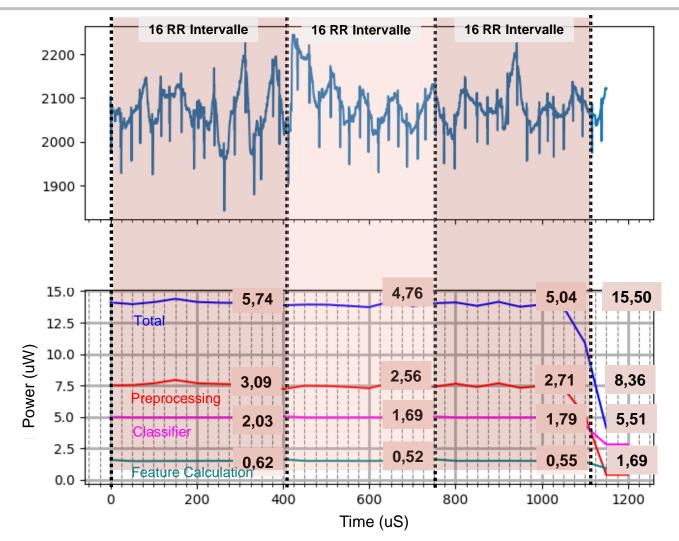
Classification in Hardware


Ensemble reordered based on features instead of trees

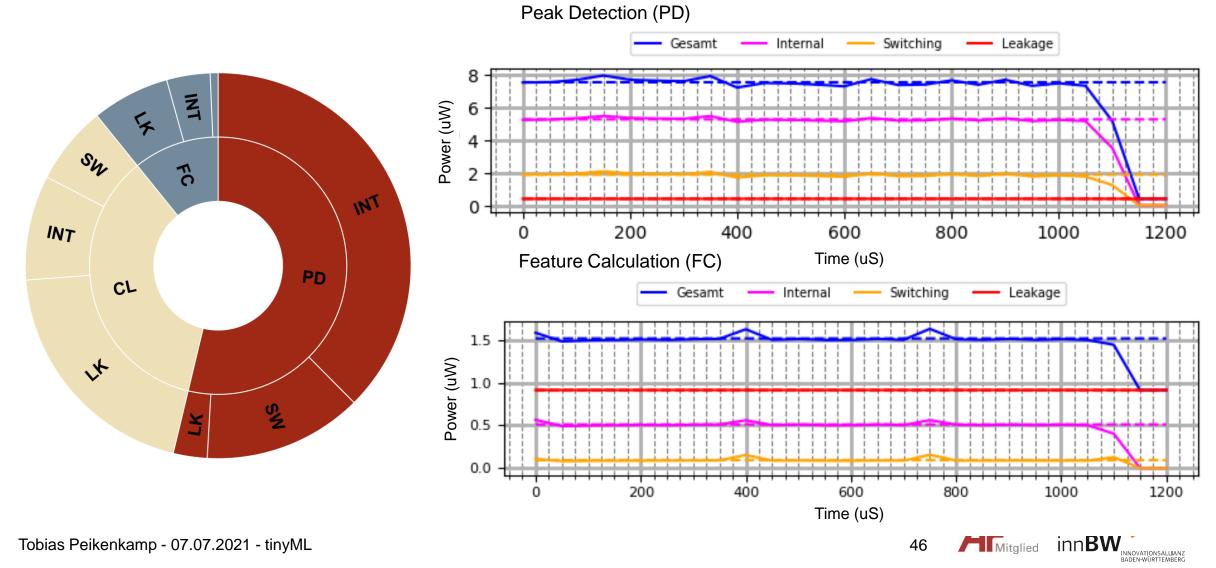
Implementation

- CAM-LUT architecture
- Pre-calculation of partial results
- Compression rates of up to 400 %
- Fetch from memory
- Small logic
- Completely reconfigurable

Combiner


- Weighting of trees
- Threshold for termination criterion

Simulation results



	Testset w/o termination	Testset With termination		
Number of files	2836			
Mean #windows per file	7,8	6,3		
Energy per file [nJ]	42,0	32,5		
Recall	92,5	92,7		
Fallout	14,4	14,7		

Tobias Peikenkamp - 07.07.2021 - tinyML

Energy Breakdown

46

Hahn

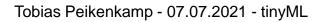
Schickard

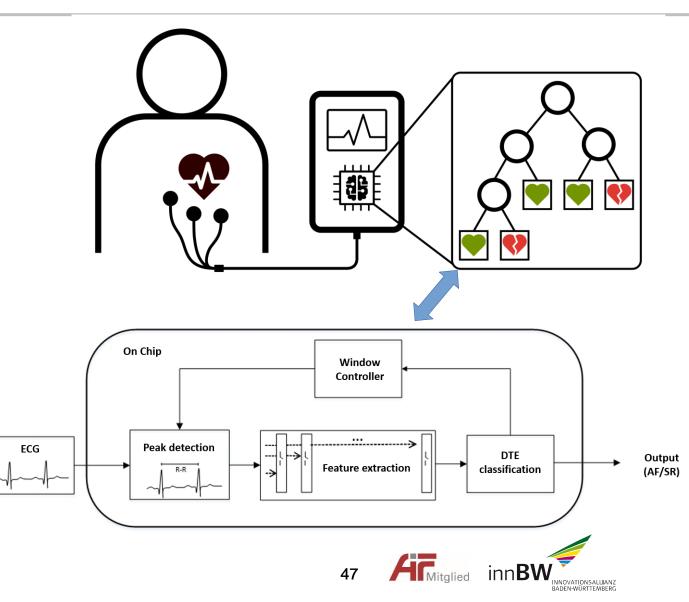
Conclusion

Classical ML approach

- Efficiency instead of number crunching
- Understandable classification

HW/SW Co-Optimization


- SW model using HW cost estimation
- HW optimized for SW model


Innovative classifier

- Rank calculation
- CAM-LUT Architecture

Low energy solution

- max. 42,0nJ / 2 minute dataset
- typ. 32,5nJ / dataset

Visions to Products

Thanks for your attention!

Copyright Notice

This multimedia file is copyright © 2021 by tinyML Foundation. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

tinyML[®] is a registered trademark of the tinyML Foundation.

www.tinyml.org

Copyright Notice

This presentation in this publication was presented as a tinyML[®] Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org