
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Tiny-SLU: An End-to-End Spoken Language Understanding for Embedded Devices
Ahmad Bijar𝟏𝟏, 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝟏𝟏, 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝟏𝟏, 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝟏𝟏,𝟐𝟐, Martin Croome𝟏𝟏, Joel Cambonie𝟏𝟏

𝟏𝟏GreenWaves Technologies, France, 𝟐𝟐University of Bologna, Italy
ahmad.bidjar@greenwaves-technologies.com

Introduction

Spoken Language Understanding (SLU) systems automate the
process of extracting the meanings or semantics of human
speech. Conventional SLUs employ two principal blocks to
convert spoken utterances into a set of slots or intents; namely,
an Automatic Speech Recognition (ASR) which transcribes
spoken words into text and Natural Language Understanding
(NLU) which analyzes the intents (Figure 1, left).

However, such frameworks have been found very challenging as
a two-step training process is required of the ASR and NLU units.
Moreover, they need large amounts of memory and
computational resources which is not supported by internet-of-
things devices (IoTs). Consequently, end-to-end solutions that
address the problem of ASR and NLU unification into a single
neural network architecture have gained more and more attention
during the last few years (Figure 1, right)

It is worth mentioning that these unified solutions also simplify the
training-aware or post-training preparation processes necessary
for quantized inferences in the embedded devices. Subsequently,
in this study, a novel end-to-end solution constructed using
recurrent neural networks is proposed. The proposed unified
network structure is trained and evaluated on a publicly available
dataset, and execution reports on the RISC-V based GAP8 and
GAP9 platforms are detailed.

Having inputs and outputs in the form of a sequence enables us
to consider a sequence-to-sequence architecture which is
composed of two components: an Encoder module which
receives acoustic features (AFs) and provides an intermediate
representation of input stream, and a Decoder that reads in the
intermediate representation and turns it into a new form of the
stream; i.e., a sequence of tokens forming a set of intents being
assigned to the spoken utterance (Figure 2).

Considering the conditional dependence between the slots (s)
and in correspondence with probability theory, the intent
probability can be estimated as

𝑝𝑝 𝑆𝑆0,𝑆𝑆1, … , 𝑆𝑆𝑛𝑛−1, 𝑆𝑆𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴) =

𝑝𝑝 𝑆𝑆0 𝐴𝐴𝐴𝐴𝐴𝐴).𝑝𝑝 𝑆𝑆1 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑆𝑆0). … .𝑝𝑝 𝑆𝑆𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴,𝑆𝑆0,𝑆𝑆1, … , 𝑆𝑆𝑛𝑛−1) (2)

A very detailed architecture of the proposed seq-to-seq modeling
is illustrated in Figure 3. Both Encoder and Decoder modules are
implemented using recurrent layers. The encoder layer is fed with
acoustic features to generate a high level of abstraction from the
spoken utterance. Once the encoder processes all input
sequence, the extracted features are transferred to the Decoder
module by initialization of its recurrent layer. As can be seen, the
Decoder is followed by a fully connected layer to map the
extracted embedding into the target vocabulary of utterances. As
mentioned earlier, the output sequence is supposed to start and
finish with additional slots of ‘START’ and ‘END’, respectively.
This means that the Decoder is first fed by ‘START’ in order to
predict the rest of the slots until it reaches the “END” slot.

For the quantization and deployment of the SLU algorithm, we
used NNTool, our internally developed neural network
compressor for GAP processors. NNTool is a python library that
aims at simplifying a high level DSP/NN graph description
(provided as an .onnx or .tflite model) by converting the
computational nodes into GAP operators, i.e. SW kernels
implemented in our backend library, the Autotiler[2].
Besides standard topology optimizations, such as operation
fusions and offline tensors reorganization for more efficient
computation, NNTool enables the automatic quantization of
different neural networks and DSP layers. Different types of
quantization schemes are available in the backend of NNTool,
including 16 and 8bits Scaled and POW2 fixed point and IEEE16
or BFloat16 floating point quantization. In this poster, we will
focus on the Scaled 8 bits quantization employed in the SLU
application. Following [3], our Scaled quantization maps every
quantized tensor of the NN inference to the real numerical space
with the affine transformation:

𝑟𝑟 = 𝑆𝑆(𝑞𝑞 − 𝑍𝑍), (3)

where 𝑞𝑞 is the integer value quantized to 8bits, r is the
representation of that value in the real space, 𝑆𝑆 = 𝑀𝑀. 2𝑛𝑛 the
scaling factor, represented in our tools and SW library with 8bits
for the mantissa 𝑀𝑀 and 8bits for the exponent 𝑁𝑁, and 𝑍𝑍 the Zero
point, the integer representation of the 0, also in 8bits as the
value q. The LSTM is the key operator of SLU, it uses its
previous output (state) along with the new data (input frame) to
recursively extract the command embedding without losing the
long term memory of the sentence.

Methods: Quantization

References

The proposed end-to-end SLU system achieves state-of-the-art
performance with an accuracy of ~94%, while respecting the real-
time and edge computing power consumption constraints with an
average total power of 7.1 and 0.5 mw in ultra-low power mode of
GAP8 and GAP9, respectively. The quantized model efficiently
runs on GAP9, being capable of processing over 4 millions of
spoken commands (average of 2 seconds each) with a single AA
battery (1.5V&1700mAh).

ASR

“Increase the temperature in the bedroom.”

Action: increase
Object: heat
Location: bedroom

Applying a scheme similar to the one presented in (3), we
quantize the LSTM operations as follows:

Thanks to NNTool, we can collect the statistics of these tensors,
by running inference in full precision over several training
samples, in this way we are able to determine the min/max
values that they can reach, and extract the 𝑆𝑆 accordingly. As you
can notice, the weights are divided into 2 sets: 𝑈𝑈 (to accumulate
with the input) and 𝑊𝑊 (to accumulate with the recursive state).
They are quantized separately with a single value (per tensor)
Scaling factor 𝑆𝑆𝑢𝑢 and 𝑆𝑆𝑤𝑤, we noted that this approach offers the
best tradeoff between accuracy and performance in the quantized
inference. The Non-Linear operations (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and tanh) are
fundamental in the numerical accuracy of the LSTM, they have
been implemented with a fast 256 point look up table which offers
<1e-3 error wrt the floating point numpy version.

The principal idea is to predict a tuple of intents/slots from a
sequence of acoustic features calculated from the spoken
utterance. This can be achieved by solving a classification
problem using conventional techniques; however, it is assumed
that a dataflow streams from the input sequence (i.e., acoustic
features) to the first slot and so on till reaching the last slot.
Subsequently, an output sequence can simply be formed by a
typical order of slots. Also, in order to indicate the starting and
ending points of the output sequence, two additional slots (𝑆𝑆)
with certain values are added accordingly:

This helps to differentiate the beginning and ending of the
predicted output sequence from the intermediate sections.

RNNAFs[0]

RNNAFs[1]

RNNAFs[m-1]

RNNAFs[m]

RNN[START]

RNN𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0

RNN𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛−1

RNN𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛

[𝐄𝐄𝐄𝐄𝐄𝐄]

⁞

⁞

En
co

de
r

D
ec

od
er

Output sequence = { START, 𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛−1, 𝑆𝑆𝑛𝑛, END} (1)

Methods: model design

NLU

End-to-End SLU

Action: increase
Object: heat
Location: bedroom

End-to-End SLU

The proposed end-to-end SLU is trained from scratch and
evaluated on the Fluent Speech Commands (FSC) dataset [4],
which contains 30,043 utterances from 97 speakers (train:77,
valid:10, test:10). This dataset is designed for controlling smart
home appliances and visual assistances with three intents or
slots; like: “turn on the light in the kitchen”: {‘Action’: activate,
‘Object’: lights, and ‘Location’: kitchen}. For acoustic features,
40-dimensional Mel-frequency cepstral coefficients (MFCCs) are
extracted with window size and hop length of 25 and 5 ms,
respectively. For 32-bit floating point arithmetic, the proposed
solution achieves an accuracy of 95% and 94% for the train and
test datasets, respectively. After the quantization process, the
accuracy drops to 93.88% (less than 1% reduction).

Experimental results

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡𝑈𝑈𝑖𝑖 + ℎ𝑡𝑡−1𝑤𝑤𝑖𝑖) → 𝑆𝑆𝑖𝑖𝐼𝐼𝑡𝑡=𝜎𝜎𝑞𝑞 (𝑆𝑆𝑥𝑥𝑋𝑋𝑡𝑡𝑆𝑆𝑢𝑢𝑈𝑈𝑖𝑖+𝑆𝑆ℎ𝐻𝐻𝑡𝑡−1𝑆𝑆𝑤𝑤𝑊𝑊𝑖𝑖)

𝑓𝑓𝑡𝑡= 𝜎𝜎(𝑥𝑥𝑡𝑡𝑈𝑈𝑓𝑓+ℎ𝑡𝑡−1𝑊𝑊𝑓𝑓) → 𝑆𝑆𝑡𝑡𝐹𝐹𝑡𝑡=𝜎𝜎𝑞𝑞(𝑆𝑆𝑥𝑥𝑋𝑋𝑡𝑡𝑆𝑆𝑢𝑢𝑈𝑈𝑓𝑓+𝑆𝑆ℎ𝐻𝐻𝑡𝑡−1𝑆𝑆𝑤𝑤𝑊𝑊𝑓𝑓)

𝑜𝑜𝑡𝑡=𝜎𝜎(𝑥𝑥𝑡𝑡𝑈𝑈𝑜𝑜+ℎ𝑡𝑡−1𝑊𝑊𝑜𝑜) → 𝑆𝑆𝑜𝑜𝑂𝑂𝑡𝑡 = 𝜎𝜎𝑞𝑞(𝑆𝑆𝑥𝑥𝑋𝑋𝑡𝑡𝑆𝑆𝑢𝑢𝑈𝑈𝑜𝑜+𝑆𝑆ℎ𝐻𝐻𝑡𝑡−1𝑆𝑆𝑤𝑤𝑊𝑊𝑜𝑜)

𝑐𝑐𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑥𝑥𝑡𝑡𝑈𝑈𝑔𝑔+ℎ𝑡𝑡−1𝑊𝑊𝑔𝑔) → 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑞𝑞 𝑆𝑆𝑥𝑥𝑋𝑋𝑡𝑡𝑆𝑆𝑢𝑢𝑈𝑈𝑔𝑔 + 𝑆𝑆ℎ𝐻𝐻𝑡𝑡−1𝑆𝑆𝑤𝑤𝑊𝑊𝑔𝑔

𝑐𝑐𝑡𝑡= 𝜎𝜎(𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡𝑐𝑐𝑡𝑡′) → 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡 = 𝜎𝜎𝑞𝑞(𝑆𝑆𝑓𝑓𝐹𝐹𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑆𝑆𝑖𝑖𝐼𝐼𝑡𝑡 ∗ 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡′)

ℎ𝑡𝑡=𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑡𝑡 ∗ 𝑜𝑜𝑡𝑡 → 𝑆𝑆ℎ𝐻𝐻𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑞𝑞(𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡) ∗ 𝑂𝑂𝑡𝑡 (4)

Conclusions

Figure 2. Sequence-to-Sequence SLU architecture Figure 3. Fully detailed SLU system.

Figure 1. Conventional (left) and End-to-End SLUs.

[1]. Lugosch, Loren, et al. "Speech model pre-training for end-to-end spoken language understanding."
arXiv preprint arXiv:1904.03670 (2019).
[2]. https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
[3]. Jacob, Benoit, et al. "Quantization and training of neural networks for efficient integer-arithmetic-only
inference." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[4]. fluent.ai/research/fluent-speech-commands/

Video Demo

Methods: modeling assumptions

	Slide Number 1

