
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Deploying ML Applications at the Edge with AKIDA and MetaTF
K. D. Carlson, D. Corvoysier, D. McClelland, & K. Tsiknos
BrainChip, 23041 Avenida De La Carlota, Suite 250, Laguna Hills CA 92653

Introduction

The Akida AKD1000 is an event-based, neuromorphic system-on-a-chip
(NSoC) designed to efficiently accelerate traditional machine learning (ML)
algorithms using brain-inspired hardware designs. The AKD1000
differentiates itself from traditional deep learning accelerators (DLAs) by
implementing event-based convolutional operations and on-chip, few-show
learning along with very low memory requirements and a focus on
collocating computational elements and memory.

However, designing, training, and deploying ML applications at the edge is
a non-trivial task that requires a mature ML development framework. To
solve this problem, BrainChip has developed MetaTF, an ML development
framework that greatly accelerates ML application development and
deployment on Akida. Most importantly, MetaTF will be familiar to ML
application developers as it is written in Python, supports TensorFlow, and
has a high-level API inspired by Keras.

MetaTF ML Framework Overview

MetaTF ML Framework Runtime

Figure 2 shows the different runtime configurations. Users can use the software
simulation in place of Akida hardware.

Figure 2A. Runtime configuration for
software simulation. B. the hardware
backend C. and the SoC integration.
Notice that the SoC runtime integration
no longer has a Python dependency,
here C/C++ is used.

MetaTF ML Workflow

The MetaTF workflow for downloading a pretrained model, converting it to
Akida, mapping the model to a device, and displaying a summary is shown
below. API calls from cnn2snn and akida Python packages allow users to
prototype in a familiar Python/TensorFlow Keras environment. The akida
API has been expanded to allow users to map their model to virtual
hardware devices.

AkidaNet

Akida Model Zoo

The Akida model zoo is a collection of pretrained Akida-compatible ML
models available for download at
https://doc.brainchipinc.com/zoo_performances. In the tables below, we
show selected models and describe the architecture, input resolution, data
set, quantization levels, accuracy, size (in KB), and number of neural
processors (NPs) each model requires.

Example Use Case: DVS Gesture

References

Training:
• Standard Keras training pipeline (16 epochs; Adam optimizer; cyclic LR

schedule with max LR 10!" and min 10!#; data augmentation 0.05
random rotation; 0.02 random translation)

• Quantize to 4-bits for both weights and activations using default
MetaTF quantization tool. Retrain for 8 epochs (as above, but max and
min LR reduced to 10!$ and 10!% respectively)

• Conversion to akida format is simple via the MetaTF method.

Models:
• “Akida Tiny”: MP2 – C16 MP2 – C16 MP2 – C32 MP2 – C64 MP2 –

C128 GAP – SC256 – Classifier
• “Akida Small”: Mp2 – C32 MP2 – C64 MP2 – C64 MP2 – C128 MP2 –

C128 GAP – SC256 – Classifier

Results:

The MetaTF ML framework is comprised of three main Python packages:

• The Akida Python package is an interface to the BrainChip Akida NSoC.
To allow the development of Akida models without actual Akida
hardware, it includes a runtime, a hardware abstraction layer (HAL),
and a software backend that simulates the Akida NSoC.

• The CNN2SNN tool converts convolutional neural networks (CNNs)
trained using deep learning methods to event-domain, low-latency, and
low-power neural networks for use with the Akida runtime.

• The Akida model zoo contains pre-built network models built with the
Akida sequential API and the CNN2SNN tool using quantized TF Keras
models.

Documentation can be found at: https://doc.brainchipinc.com/

The Akida package is explained in detail below in Figure 1.

DVS Gesture (Amir et al., 2017) is a well-known event-based dataset,
comprising recordings of subjects performing gestures (clapping, waving,
circular motions etc.) made with a DVS128 event-based camera. Here we
present our approach to achieving state of the art performance on this
dataset, using a MetaTF training pipeline.

• Amir, A. et al. (2017). ‘A low power, fully event-based gesture recognition system’ IEEE Conference on
Computer Vision and Pattern Recognition, pp 7388-7397, doi: 10.1109/CVPR.2017.781

• Howard, A. G. et al. (2017) ‘MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications’ arXiv:1704.04861 [cs]

• Kugele, A. et al (2020) ‘Efficient Processing of Spatio-Temporal Data Streams with Spiking Neural
Networks’ Frontiers in Neuroscience 14 doi: 10.3389/fnins.2020.00439

• Mehr, A. et al (2019) ‘Action recognition using supervised spiking neural networks.’ arXiv:1911.03630
• Wang, Q. et al (2020) ‘Space-time event clouds for gesture recognition: from RGB cameras to event

cameras’. IEE WACV doi: 10.1109/WACV.2019.00199

Contacts: kcarlson@brainchip.com
rtelson@brainchip.com

Figure 1. The Akida Model API library supports the creation of Akida models, the
inferencing and serialization of instantiated models, and their mapping on
hardware devices. The SW backend simulator is a CPU implementation of the
Akida training and inference. The Akida Engine Library is a C++ library that
supports model instantiation and inference on hardware devices. Finally, Akida
Infra denotes the HAL.

A B

C

#!/usr/bin/env python
import os
from akida import AKD1000
from cnn2snn import convert
from akida_models import ds_cnn_kws_pretrained

Load Keras pre-trained model from Akida model zoo
model_keras = ds_cnn_kws_pretrained()

Convert Keras model to Akida
model_akida = convert(model_keras)

Map/compile converted model for the AKD1000 chip
model_akida.map(device=AKD1000())

Check model mapping: NP allocation and binary size
model_akida.summary()

Converted model
can be tested with:
• Akida simulator
• Akida and PCIe

development
board

Output of the model
summary is shown
here

You can use virtual
devices to find out
how many neural
processors (NPs) a
model requires
without the needing
the physical
hardware

Recently, we have developed a replacement for the popular MobileNet v1
model used as a backbone in many applications that we call AkidaNet.
AkidaNet’s architecture utilizes the Akida hardware more efficiently. Some
of our preliminary results are shown below for object classification, face
recognition, and face detection. In many cases, switching from MobileNet
v1 to AkidaNet results in a slight increase in speed and accuracy
accompanied by a 15% to 30% decrease in power usage.

We describe MobileNet and its variants using the same width multiplier (α)
convention detailed in Howard et al., 2017. The width multiplier scales the
input and output channels of all layers by α, so α = 0.5 produces a model
with 50% fewer input and output channels in all layers.

MobileNet
Variant

Data Set
Resolution

Classification Accuracy
(% change)

% Power
Change

FPS
(% Change)

α = 0.5 ImageNet
224×224

61.30%
(+1.54%) (-15.87%) 33

(+6.45%)

α = 0.25 ImageNet
224×224

46.71%
(+1.59%) (-29.86%) 70

(+7.69%)

MobileNet
Variant

Data Set
Resolution

Classification Accuracy
(% change)

% Power
Change

FPS
(% Change)

α = 0.5 LFW
112×96

97.25%
(-0.02%) (-25.48%) 106

(+10.42%)

α = 0.5 Casia Webface
112×96

71.13%
(-0.27%) (-26.27%) 74

(-2.63%)

MobileNet
Variant

Data Set
Resolution

mAP
(% change)

% Power
Change

FPS
(% Change)

α = 0.5 Widerface
(224x224)

72.00
(+0.75%) (-17.78%) 35

(+2.94%)

Table 1. Object classification model performance changes MobileNet v1 à AkidaNet

Table 2. Face recognition model performance changes MobileNet v1 à AkidaNet

Table 3. Face detection model performance changes MobileNet v1 à AkidaNet

Architecture Resolution Dataset Quantization Top-1 accuracy Size (KB) NPs
AkidaNet 224 ImageNet 8/4/4 69.65% 6322.6 129
AkidaNet 0.5 224 ImageNet 8/4/4 61.30% 1214.4 38
AkidaNet 0.5 160 Cats vs Dogs 8/4/4 96.60% 698.4 24

AkidaNet 0.5 224 Imagenette 8/4/4 95.67% 815.5 32
AkidaNet 0.25 224 Imagenette 8/4/4 91.54% 203.9 22

AkidaNet 0.5 224
SIIM-ISIC
Melanoma
Classification

8/4/4 98.31% -
AUROC 0.7969 811.4 32

AkidaNet 0.5 224 PlantVillage 8/4/4 97.92% 1018.8 33

AkidaNet 0.25 96 Visual Wake
Words 8/4/4 82.75% 227.7 17

Table 4. Selected image classification models available.

Architecture Resolution Dataset Quantization Top-1 accuracy Size (KB) NPs

AkidaNet 0.5 112x96
CASIA
Webface face
identification

8/4/4 70.18% 1929.8 21

AkidaNet 0.5 112x96 LFW face
verification 8/4/4 97.25% 691.2 20

Table 5. Selected face recognition models available.

Architecture Resolution Dataset Quantization Top-1 accuracy Size (KB) NPs

AkidaNet 0.5 224 Physionet2017
ECG classification 8/4/4 73.50% -

AUROC 0.7940 1008.4 36

PointNet++ Input Scaling
(127,127)

ModelNet40 3D
Point Cloud 8/4/4 84.76% 528.5 17

Table 6. Selected time-series and point cloud classification models available.

Figure 3. Data Preparation. Although the data are event-based, we are able to
use a standard Keras training pipeline. Temporal snapshots of the data (100 ms)
are prepared as ‘images’. We use the ‘channel’ dimension of the images to
encode extra temporal information: the 100 ms time window is subdivided into 5 x
20 ms bins, and each of these is encoded across two channels for event polarity
(On vs Off events). For each ‘pixel’, we simply sum the number of events in each
time bin (clipped at 15 for the 4-bit case).

Params
(million)

ops
(Mops)

Amir 1.53 -
Mehr * -
Wang 1.37 -
Kugele 0.48 651
Ak. Small 0.32 11
Ak. Tiny 0.14 2

Figure 4. Test accuracy as a function
of temporal processing window. As is
apparent for both Akida models, and for
other state-of-the-art solutions,
integrating a longer input data window is
strong factor in determining accuracy.
Symbol diameter is proportional to the
number of network parameters in each
model. (*Mehr et al. use a true SNN so
direct comparison is difficult)

Table 7. Number of
parameters and operations
for SOTA models. Both Akida
models are much smaller than
the other networks. The only
model with a higher
performance on a shorter
integration time window (See
Fig. 4), is that of Kugele et al.
which requires 1-2 orders of
magnitude more operations.

https://doc.brainchipinc.com/zoo_performances
https://doc.brainchipinc.com/
mailto:kcarlson@brainchip.com
mailto:rtelson@brainchip.com

