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SOLVING SMART PARKING REQUIREMENTS WITH ALPR

ABSTRACT

Today’s automatic license plate recognition (ALPR) systems are 
designed for fast moving, multilane recognition and come with a 
significant price tag. Requiring cloud connectivity and large 
amounts of processing, these complex systems are overkill for 
smart parking, and come rife with privacy concerns.

In partnership with the team from Cloudtop, led by prof. Shaoming 
Zhang at Tongji University, XMOS has developed a cost-effective, 
low power ALPR system that can read slow moving license plates 
from a distance of 3 to 5 meters, with high accuracy.

Running on two tiles of xcore.ai silicon (XMOS’ 3rd generation 
microprocessor), each containing 8 hardware threads and 512kB 
of SRAM, the solution can deliver up to a 98% recognition 
accuracy at an unprecedented price-point. This is enabled by a 
single shot detector (SSD) network to find the license plate 
bounding box and a lightweight character recognition network to 
decode the province code and alphanumeric string that follows. 
These networks were scaled for the edge from large models 
designed for moving vehicles at longer ranges.

In this poster, we highlight our two-network solution, and the 
innovative optimizations XMOS uses to deliver a super light neural 
network 8-bit model with plate detection and OCR.

TINY ALPR WITH XMOS ON XCORE.AI

Cloudtop adapted an existing solution that used two large 
networks to perform ALPR on fast moving vehicles at traffic 
intersections to fit on xcore.ai by focusing on stationary vehicles in 
tightly constrained locations with well controlled lighting inside 
parking garages. Figure 3 shows the locations of different 
processing and storage blocks in the xcore.ai chip and external 
Flash memory.

RETHINKING THE TENSOR ARENA

Shrinking these networks was an iterative process and the first 
few iterations leveraged our LPDDR interface which allows very 
large models to be run efficiently by placing the model weights, 
arena, or both into an external memory. This increases energy 
consumption and cost, so we decided to limit ourselves to internal 
SRAM and our existing external Flash memory. A 
load_from_flash() operator allowed us to make our models orders 
of magnitude smaller (with the weights factored out into flash 
storage). This made the network small enough to put into the 
Tensor Arena along with the current layer’s input, output, and 
weights. 

This allowed us to handle networks that would not fit in available 
SRAM and leveraged the memory planner to remove redundant 
storage, but the Tensor Arena size did not necessarily shrink, and 
tended to be dominated by a few very wide layers in a given 
network. To solve this, we introduced a strided_slice() operator for 
splitting and a concatenate() operator for joining the network 
around these locations. 

XCORE.AI DEPLOYMENT FRAMEWORK

Evaluating the performance of networks and cameras on xcore.ai 
is made easier by two key software packages from XMOS: xcore-
opt and AI Server. All that is required to use these tools is a model 
that can be converted to TensorFlow Lite and an xcore.ai explorer 
board.

A .tflite file can be converted using xcore-opt with a familiar 
python interface similar to that of TensorFlow, or by calling the 
xcore-opt executable in a similar manner to LLVM’s opt. 
Converted models can also be executed on a host to check for 
any issues (including with the memory plan) before deploying the 
model on hardware.

THE ALPR PROBLEM

To find out more, please visit the XMOS stand in the exhibition, or navigate to xmos.ai
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ALPR is becoming ubiquitous in parking and tolling 
applications for space reservation, fee collection and violation 
enforcement. All ALPR systems photograph one or more cars to 
determine what license plate ID(s) are at that location at a given 
point in time. Figure 1 shows an example cloud-based 
solution with nominal energy and data requirements for each 
stage.

Figure 1

Figure 2
* Local WiFi, Zigbee , or Bluetooth would also be options with potentially lower power.

Figure 3

NETWORKS

The first network is a single shot detector (SSD) that locates the 
most likely bounding box of the license plate from a picture of a 
car. The input tensor for this network is only a subset of what the 
camera sensor captures, but this data is cropped to a region of 
interest as the data are streamed in. This decreases the size of 
the input tensor and of the frame buffer. If the problem were even 
more constrained a smaller sensor with a narrow FOV lens could 
further reduce compute and memory requirements.

NETWORK DETECTION (SSD) RECOGNITION
INPUT TENSOR SIZE 160 x 160 x 3 32 x 128 x 3

WEIGHTS ~350kB ~100kB
OUTPUT TENSOR 
SIZE(S)

1 x 460 x 4 and 1 x 
460 x 2

1 x 16 x 66

The second network performs character recognition across the 
bounding box returned by the first network. In order to minimize 
memory usage a second image is taken at this point with the 
region of interest updated based on the bounding box. This 
network returns the most likely symbols in the license plate in 16 
overlapping positions, these raw estimates are then filtered to 
generate a province code followed by 7 alphanumeric values.

Figure 4: Detection and recognition network diagrams

Break up large 
operations to minimize 
arena size

Figure 5: Example operator splitting substitution

Depending on threading and execution plans these splits could 
be used to boost performance or to shrink the Tensor Arena size, 
in order to create a Tiny ALPR we chose the latter.

Figure 6: Operator splitting adds additional steps to the execution 
plan but reduces the required size of the Tensor Arena
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If the parameters of the problem allow for a Tiny ALPR 
solution, we can simplify this diagram to that of Figure 2 where 
we still have network connectivity, but only need to send entire 
images in the exceptional case where a violation 
is reported, and photographic evidence is needed.

HARDWARE PROTOTYPE

To test real world performance, we made a prototype for a long-
term test complete with enclosure and the customer’s preferred 
backhaul interface, which in this case was UART.
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Figure 7: Prototype system for customer evaluation

*  SRAM-only configuration available for small models
** Images can be live from camera or sent from host

Figure 8: Block diagram showing common AI Server configurations

To deploy the model on hardware run the AI Server executable on 
an xcore.ai explorer board, then, using the Python interface you 
can send models, images, and tell the server to do inference or to 
acquire data. Data can be acquired from the host or from a 
camera, and new cameras can be added to the AI server example 
application by defining three functions to send the appropriate 
settings / commands to the camera module over I2C:

– Init()
– Capture()
– stop() (optional)

Once these are defined for your camera most evaluation of the 
imaging and inferencing system can be done with Python via USB 
using either live or pre-captured images to test accuracy, 
throughput and memory usage. By removing the USB interface 
and substituting I2C or just writing the application logic on the 
xcore this prototype can turn into production ready firmware and 
tuned for performance and memory usage.
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