
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

SOLVING SMART PARKING REQUIREMENTS WITH ALPR

ABSTRACT

Today’s automatic license plate recognition (ALPR) systems are
designed for fast moving, multilane recognition and come with a
significant price tag. Requiring cloud connectivity and large
amounts of processing, these complex systems are overkill for
smart parking, and come rife with privacy concerns.

In partnership with the team from Cloudtop, led by prof. Shaoming
Zhang at Tongji University, XMOS has developed a cost-effective,
low power ALPR system that can read slow moving license plates
from a distance of 3 to 5 meters, with high accuracy.

Running on two tiles of xcore.ai silicon (XMOS’ 3rd generation
microprocessor), each containing 8 hardware threads and 512kB
of SRAM, the solution can deliver up to a 98% recognition
accuracy at an unprecedented price-point. This is enabled by a
single shot detector (SSD) network to find the license plate
bounding box and a lightweight character recognition network to
decode the province code and alphanumeric string that follows.
These networks were scaled for the edge from large models
designed for moving vehicles at longer ranges.

In this poster, we highlight our two-network solution, and the
innovative optimizations XMOS uses to deliver a super light neural
network 8-bit model with plate detection and OCR.

TINY ALPR WITH XMOS ON XCORE.AI

Cloudtop adapted an existing solution that used two large
networks to perform ALPR on fast moving vehicles at traffic
intersections to fit on xcore.ai by focusing on stationary vehicles in
tightly constrained locations with well controlled lighting inside
parking garages. Figure 3 shows the locations of different
processing and storage blocks in the xcore.ai chip and external
Flash memory.

RETHINKING THE TENSOR ARENA

Shrinking these networks was an iterative process and the first
few iterations leveraged our LPDDR interface which allows very
large models to be run efficiently by placing the model weights,
arena, or both into an external memory. This increases energy
consumption and cost, so we decided to limit ourselves to internal
SRAM and our existing external Flash memory. A
load_from_flash() operator allowed us to make our models orders
of magnitude smaller (with the weights factored out into flash
storage). This made the network small enough to put into the
Tensor Arena along with the current layer’s input, output, and
weights.

This allowed us to handle networks that would not fit in available
SRAM and leveraged the memory planner to remove redundant
storage, but the Tensor Arena size did not necessarily shrink, and
tended to be dominated by a few very wide layers in a given
network. To solve this, we introduced a strided_slice() operator for
splitting and a concatenate() operator for joining the network
around these locations.

XCORE.AI DEPLOYMENT FRAMEWORK

Evaluating the performance of networks and cameras on xcore.ai
is made easier by two key software packages from XMOS: xcore-
opt and AI Server. All that is required to use these tools is a model
that can be converted to TensorFlow Lite and an xcore.ai explorer
board.

A .tflite file can be converted using xcore-opt with a familiar
python interface similar to that of TensorFlow, or by calling the
xcore-opt executable in a similar manner to LLVM’s opt.
Converted models can also be executed on a host to check for
any issues (including with the memory plan) before deploying the
model on hardware.

THE ALPR PROBLEM

To find out more, please visit the XMOS stand in the exhibition, or navigate to xmos.ai

Dr. Andrew Cavanaugh
XMOS

Professor Shaoming Zhang
Tongji University, Shanghai, China

ALPR is becoming ubiquitous in parking and tolling
applications for space reservation, fee collection and violation
enforcement. All ALPR systems photograph one or more cars to
determine what license plate ID(s) are at that location at a given
point in time. Figure 1 shows an example cloud-based
solution with nominal energy and data requirements for each
stage.

Figure 1

Figure 2
* Local WiFi, Zigbee , or Bluetooth would also be options with potentially lower power.

Figure 3

NETWORKS

The first network is a single shot detector (SSD) that locates the
most likely bounding box of the license plate from a picture of a
car. The input tensor for this network is only a subset of what the
camera sensor captures, but this data is cropped to a region of
interest as the data are streamed in. This decreases the size of
the input tensor and of the frame buffer. If the problem were even
more constrained a smaller sensor with a narrow FOV lens could
further reduce compute and memory requirements.

NETWORK DETECTION (SSD) RECOGNITION
INPUT TENSOR SIZE 160 x 160 x 3 32 x 128 x 3

WEIGHTS ~350kB ~100kB
OUTPUT TENSOR
SIZE(S)

1 x 460 x 4 and 1 x
460 x 2

1 x 16 x 66

The second network performs character recognition across the
bounding box returned by the first network. In order to minimize
memory usage a second image is taken at this point with the
region of interest updated based on the bounding box. This
network returns the most likely symbols in the license plate in 16
overlapping positions, these raw estimates are then filtered to
generate a province code followed by 7 alphanumeric values.

Figure 4: Detection and recognition network diagrams

Break up large
operations to minimize
arena size

Figure 5: Example operator splitting substitution

Depending on threading and execution plans these splits could
be used to boost performance or to shrink the Tensor Arena size,
in order to create a Tiny ALPR we chose the latter.

Figure 6: Operator splitting adds additional steps to the execution
plan but reduces the required size of the Tensor Arena

model

model

model

model

Input

Conv2D

Depthwise

FC FC

Input

Conv2D

DW1

DW2

model

model

model

model

modelEx
ec

ut
io

n
Ro

un
ds

Arena Size Arena Size

If the parameters of the problem allow for a Tiny ALPR
solution, we can simplify this diagram to that of Figure 2 where
we still have network connectivity, but only need to send entire
images in the exceptional case where a violation
is reported, and photographic evidence is needed.

HARDWARE PROTOTYPE

To test real world performance, we made a prototype for a long-
term test complete with enclosure and the customer’s preferred
backhaul interface, which in this case was UART.

Camera module

Clock

Voltage regulation

Standard camera
connector with 2 lane

MIPI and I2C

USB to UART xcore.ai
explorer board

Camera module

xcore.ai
LPDDR

Figure 7: Prototype system for customer evaluation

* SRAM-only configuration available for small models
** Images can be live from camera or sent from host

Figure 8: Block diagram showing common AI Server configurations

To deploy the model on hardware run the AI Server executable on
an xcore.ai explorer board, then, using the Python interface you
can send models, images, and tell the server to do inference or to
acquire data. Data can be acquired from the host or from a
camera, and new cameras can be added to the AI server example
application by defining three functions to send the appropriate
settings / commands to the camera module over I2C:

– Init()
– Capture()
– stop() (optional)

Once these are defined for your camera most evaluation of the
imaging and inferencing system can be done with Python via USB
using either live or pre-captured images to test accuracy,
throughput and memory usage. By removing the USB interface
and substituting I2C or just writing the application logic on the
xcore this prototype can turn into production ready firmware and
tuned for performance and memory usage.

ACKNOWLEDGEMENTS

Tongji University

Cloudtop network renderings generated by netron.app

