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Introduction

Automatic Speech Recognition (ASR) systems achieve today

remarkable results thanks to the exploitation of high performing

hardware and sophisticated deep neural network architectures.

Powerful ASR solutions need high memory storage capacities

and high-power processing capabilities. The challenge is to

deploy ASR complex algorithms in hardware platforms with

limited resources.

This work proposes an AI-based vocal commands recognition

system to be executed directly on a Microcontroller Unit (MCU).

The target hardware platform is the STM32L496G microcontroller

running @80MHz with 1MB of FLASH and 320KB of RAM.

The aim of this work is to design a Deeply Quantized Neural

Network (DQNN) by applying to a Deep Neural Network (DNN)

different schemes of training aware quantization exploiting

Google QKeras framework [1], thus evaluating the resulting

memory and power saving versus the drop of accuracy.

The final system will execute the audio pre-processing step and

the NN inference classification (Figure 1) on the MCU.

Deep Neural Network architecture

QKeras 8-bit aware training quantization

The KWS is a voice interaction application which, running in

“always-on” mode, need to be characterized of a low power

consumption, a low latency and, at the same time, high accuracy

for an adequate real time user experience.

In these work is proposed a hybrid quantization scheme to deeply

quantize a KWS DNN by applying a binarization to the more

impacting layers. Results show that the DQNN KWS pipeline

reaches an acceptable accuracy of 90% by requiring a FLASH of

0.076MB. Future experiments will further shrink the model size to

reduce the memory requirements and the MCU’s overload by

quantizing also the bias and the activations of the binary

pipeline’s section. The binarization will be also extended to the

convolutive layers and the drop of accuracy will be analyzed.

Residual connections and various learning rate schedulers will be

tested.

Results

The configuration details of the proposed KWS pipeline are

reported in TABLE1. The network recognizes ten words, in future

tests a data augmentation will be performed. The “unknown” class

will be also included in the training step.

TABLE1 KWS proposed pipeline

Input net size 38X55 

Output num classes 10 commands

Quantization schemes(*) • QKeras 8-bit 

• QKeras 8-bit and 1bit

DNN topology CNN

The proposed deep neural network architecture recognizes 10

vocal commands taken from the Google dataset [2]. The network

consists of six convolutional layers followed by three fully

connected layers (see Figure 4).

In a second step, an 8-bit quantization was applied by testing

different configurations to find the best QKeras quantizers

parameter’s setting. Final model performs on the test set an

accuracy of 92%, while the final memory size has been reduced

to a quarter of the original FP32 model. The 8-bit model has been

validated with X-Cube-AI [4], it requires a FLASH = 0.48MB and

a RAM = 127.4 KB.

TABLE2 ACCURACY 

%

FLASH 

MB

RAM      

KB

MACC 

M

KWS proposal FP32 

(Keras)

94 2.12 149.20 20.5

KWS proposal 8-bit

(QKeras)

92 0.48 127.4 10.5 

KWS proposal hybrid1-8 

bit(QKeras)

90 0.076 127.4 10.5 

A final, more aggressive quantization has been applied through

QKeras by binarizing a part of the KWS network. The hybrid

model is composed of 8-bit Conv2D layers and two Dense binary

layers. The binarization allows a further reduction of memory by

achieving 90% of accuracy by using the Adam optimizer.

QKeras hybrid aware training quantization

Conclusions

Keras model 

Audio pre-processing

The audio signal is sampled at 16KHz, it is buffered in 512 audio

samples with an overlap of 256 samples. For each frame, the

first 38 audio Mel Frequency Cepstral Coefficients are extracted

and organized in a (38 x 55) matrix continuously updated with

new columns added to the queue in FIFO (First In First Out)

mode, as shown in Figure 3.

The MFCC matrix is the input of the Neural Network.

Before the training step, the audio features are normalized

according to the equation (A) to have data with standard normal

distribution.

𝑥′ =
𝑥−𝜇

𝜎
(A)

Where x is the original feature vector, μ and σ are the mean and

the standard deviation of the training set respectively.

Normalization is useful to speeds-up the convergence of the

neural model during the training. The computed (μ, σ) are used to

normalize the audio features also before the inference model

execution.
Dataset

The neural model was trained and tested on Google Speech

Commands Dataset [2], which includes 30 different words for a

total of 65.000 1-sec audio files.

Each word has got about 2000 samples. The dataset is released

under Creative Commons BY 4.0 and it is constantly updated by

the community. Words are pronounced by different speakers

(both male and female subjects), using microphones placed at

various distances.

output

Hybrid pipeline learning curves

Audio buffer handling

The neural network receives the Mel Filter Cepstral Coefficients

(MFCC) as inputs. The pipeline used to extract the MFCC

coefficients is showed in Figure 2.

The MFCC are classic audio features widely used in Speech

Recognition processing, since they use a bank of Mel Filters, i.e.,

triangular filters able to mimic the non-linear human ear

perception of the sound. Furthermore, at the end of MFCC

computation a Discrete Cosine Transform removes the

redundancy in the signal, representing it with fewer number of

parameter than the original signal.

Figure 1

Figure 2

Figure 5

Figure 3
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Figure 4

(*) only weights

At first the neural network was designed in floating point 32bits

and trained using the Keras framework [3]. The floating-point

model reached an accuracy of 94% on the test set, but the

memory requirements (FLASH=2.12MB; RAM=149.20KB)

exceed the memory available in the selected target platform.

Figure 5 highlights that the dense layer (id = 14) impacts the most

on FLASH requirements, as it uses the 86.2% of the total amount

of memory required by the entire pipeline.

Details of accuracy, memory requirements and complexity

expressed in MACC (Multiply And ACCumulate) are reported in

TABLE2. Obtained results show that the hybrid quantization can

be a good strategy to strongly reduce the model FLASH size by

maintaining an acceptable accuracy. The original FP32 proposed

pipeline needed 2.12 MB of flash which has been reduced to

0.076 MB after applying a hybrid quantization scheme designed

to binarize the more impacting layer on memory size.

https://github.com/google/qkeras
https://keras.io/
https://www.st.com/en/embedded-software/x-cube-ai.html

