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Conventional Computer Vision Pipeline

Proposed Log∇ Computer Vision Pipeline

Datasets

Experiment 🅐 CNN Architecture Search: µNAS

PASCAL RAW 2014 
6550 images,  demosaicked grayscale
3 classes: {bicycle, car, person}
One sensor, Nikon D3200 DSLR

Visual Wake Words (VWW)
123k+ RGB images in 2 classes: {background, person}

Why not VWW? Lossy JPEG images & large variance in 
(unknown) camera characteristics

Experiment 🅑 Fixed CNN Architectures

xxx

Robustness Against Illumination Changes

VWW Results
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Multi stages, e.g. 
• Demosaicking
•White balance

• Classification
• Detection
• Segmentation

Energy hungry, designed for human perception
Mismatches: tiny → power ML → machine

RAW                                      JPEG         

Log∇ CV 
(Ours)

RAW linear
(Quantized) log∇

Imager CNN

Hardware-algorithm codesign
• log∇ imager  (prior work [1])
• no ISP (end-to-end learning)

⓿ log∇ images log∇ sensor compute log∇ from RAW

❶ smaller CNN 
🅐 Architecture search_

🅑 Fixed architectures_

How?

model size
memory usage
MACs
filter redundancy 
prunability
illumination robustness

For 16-bit RAW, 
log∇ ∈ (-22.2 22.2)

Histograms 
of log∇

⓿ Compute log∇ images from RAW

Image 𝑃 ∈ ℝ"×$

• Take log 𝑃% = log(𝑃 + 1)
• Take gradients: log ∇ = 𝑃′ ∗ 𝑓

𝑓 =
0 −1 0
−1 0 1
0 1 0

• Quantization: Empirical thresholds

Hardware efficiency: Use a ratio-to-digital converter (RDC),
drop ‘log’:  (log ∇)&,(= log P&,()* − log P&,(+*
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1.5-bit 
thresholds

8-bit JPEG μNAS

log∇ μNAS

…

150 filters 

5 filters

Cosine 
similarity

log∇ has more duplicate filters
→ more  redundancy 

→ more pruning

Conv. CV 

Tiny CV Imager ISP CNN

• Pruning
• Quantization

Energy Consumption

Skip 
stages

Pipelines

Imager ISP CNN
Lower 
resolution
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RAW                    JPEG

Lossy

16-bit 
RAW  

Multiple 
unknown

imagers

≠

Lower resolution Skip ISP stages
• Pruning
• Quantization
• Architecture search

Solution: Improve each part  

RAW                    JPEG

Lossy

µNAS → for microcontrollers

Set bounds
model size
memory usage
MACs

Future Work

• Quantized training
• Threshold search
• Adversarial robustness

Dataset:
PASCAL 
RAW 2014

Simulated RAW (lossy) ≠ RAW


