
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Quantization of LSTM Layers by a Heuristic Approach
Alexander Samuelsson, Johan Malm, Albert Seward
Imagimob, Embassy House, Medborgarplatsen 3, 118 26, Stockholm

Introduction

Long short-term memory cells (LSTMs) introduced by Hochreiter

and Schmidhuber in 1997 [1] have been used successfully in

state-of-the-art models that treat time-series data and can be

credited with the success for solving the difficult problems in

language modelling, translation, robotics, and gaming. Their idea

was to equip traditional Recurrent Neural Networks (RNNs) with

“forget gates” so that information could optionally flow through the

network unaltered, which solved the so-called vanishing gradient

problem. This allowed the network to be trained on arbitrarily long

sequences. Implementation of neural networks on digital

computers can often be done using floating-point numbers, since

most modern PCs, smartphones, tablets and more powerful

microcontrollers (MCUs) for embedded systems have a floating-

point unit (FPU). But for the tiniest MCUs on the market (e.g.,

ARM’s M0-M3 cores) the best performance is achieved by

transforming the data to integer numbers and performing all the

calculations with integer arithmetic.

By specifying the integer bit width to be 16 or 8 the memory

consumption can be reduced as well. The conversion from

floating-point numbers and operations to integers requires great

care, to not introduce large errors in the calculation (Fig. 1).

LSTMs are known to be hard to quantize due to their capability to

remember features over of long sequences of inputs, which could

easily amplify small errors if the quantization procedure is not

done correctly.

Instead, by monitoring the largest and smallest values in the

calculations (each tensor of the neural network) for some typical

data that will be passed through the network, we use a simple

linear relationship y = kx + m to map the floating-point values to

integers (the quantize operation, 𝑞(∙)):

By finding proper values for the scale and zero-point parameters

in the above relationship we can make sure that the integer

ranges are respected ([-128, 127] in the case of int8), and no

overflow will occur. Note that we are free to choose these values,

e.g., it is legitimate to keep the minimum value fixed (-128), while

changing the scale to something else, and vice versa (keep max

as 127 and change the scale) or keep the zero-point and set a

new scale. This observation is the foundation of the approach

outlined here. Using relation (1) above with proper scale and

zero-point values yields a much smaller quantization error as

shown in Fig. 3 below.

The transformed values are used in the internal calculations, but

in the end, we usually map the values back to physical values

that make sense to us, which we do by using the inverse

mapping (or the dequantize operation, 𝑑(∙))

Except for transforming the data to integers, we also need to

implement integer versions of all the operations in the neural

network. In essence, this means that we rewrite the floating-point

operations by using the mappings (1) and (2) above, following the

idea in [2]. For a simple multiplication between the floating-point

values 𝑎 and 𝑏, we get,

where,

Now, applying (2) to get the integer result of this operation we

have,

The activation functions in the Imagimob solution are

implemented as Lookup tables (“LUTs”) to avoid the floating-point

operations. Using all this, we can run the calculations as integer-

only – all we need to do is to quantize the input data and

dequantize the output data, shown in Fig. 4 below.

As noted earlier, we are free to choose scale and zero-point

values, but we need to select them carefully to keep the

quantization error low. As an example, we should choose scale

values so that the error after the rounding operation in expression

(4) becomes small, namely so that the scale in the numerator and

denominator are equal. We can use this as a requirement or

“contract” in our implementation:

where we mean that the scales shall be made equal. We can

achieve this by using the observation made earlier that we can
set one of the scales, e.g., setting 𝑠𝑐𝑎𝑙𝑒𝑚𝑢𝑙𝑜𝑝 to 𝑠𝑐𝑎𝑙𝑒𝑎𝑏, and then

adjusting the minimum and maximum values for the integer

accordingly. Often, however, the different scale and zero-point

values from one operation appear in the next operation and

become coupled. Noting down all relationships in the compute

graph results in a large system of equations with integer solution.

Often the system is overdetermined which leads to an

optimization problem. The round-operator is often present in the

equations, which makes the problem nonlinear.

The Nonlinear Integer Optimization Problem

References

[1] Hochreiter, Sepp; Schmidhuber, Jürgen (1997-11-01). Long

Short-Term Memory. Neural Computation. 9 (8): 1735–1780

[2] B. Jacob et al. Quantization and Training of Neural Networks

for Efficient Integer-Arithmetic-Only Inference. (2017-12-15)

Imagimob’s approach consists of:

1) Finding the min and max values on all tensors using

representative data.

2) Using the relationships between the scales and zero-points in

the compute graph to update the min and max values to fulfil the

contracts.

3) Generating quantized C code.

4) Comparing quantized withnon-quantized code to find the

quantization error (final test).

The approach is verified by quantizing different types of neural

network models consisting of convolutional, dense and LSTM

layers with small maximum absolute errors and close to zero

classification errors. The CPU gain between non-quantized and a

quantized model running on an MCU without FPU is around 6

times, and memory requirements are reduced by 50 % for the

quantized model when using 16-bit integer representation.

In Imagimob AI, quantization of a trained model is done with the

click of a button in a user-friendly user interface as shown in Fig.

5 below. C code without any floating-point operations is

generated, ready for integration in firmware, ready for

deployment on a microcontroller.

Interested in learning more? If you find this useful, please visit us

at www.imagimob.com or drop us an email info@imagimob.com.

𝑖𝑛𝑡𝑒𝑔𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = 𝑟𝑜𝑢𝑛𝑑
𝑓𝑙𝑜𝑎𝑡_𝑣𝑎𝑙𝑢𝑒

𝑠𝑐𝑎𝑙𝑒
+ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 (1)

𝑓𝑙𝑜𝑎𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 ∙ 𝑠𝑐𝑎𝑙𝑒 (2)Post-training Quantization

Post-training quantization is to start out as usual with a neural

network defined in floating-point numbers, train it, and then

quantize the end-result. It is a flexible solution, as the trained

model can be used both on platforms with and without an FPU. In

Full integer quantization, the idea is to replace all the floating-

point values in the already trained model with integers, typically

8-bit integers with range [-128, 127] or 16-bit integers with range

[-32 768, 32 767]. These ranges are less compared to what a 32-

bit floating-point value can represent and therefore, care is

needed for this transformation. Simple rounding of the floating-

point range [-2, 5] generates a large quantization error, as shown

below in Fig. 2.

𝑚𝑢𝑙𝑜𝑝 = 𝑎 ∙ 𝑏 = 𝑎𝑖 − 𝑧𝑎 ∙ 𝑠𝑐𝑎𝑙𝑒𝑎 ∙ 𝑏𝑖 − 𝑧𝑏 ∙ 𝑠𝑐𝑎𝑙𝑒𝑏 =

𝑎𝑖 − 𝑧𝑎 ∙ 𝑏𝑖 − 𝑧𝑏 ∙ 𝑠𝑐𝑎𝑙𝑒𝑎𝑏 (3)

𝑠𝑐𝑎𝑙𝑒𝑎𝑏 = 𝑠𝑐𝑎𝑙𝑒𝑎 ∙ 𝑠𝑐𝑎𝑙𝑒𝑏 .

𝑚𝑢𝑙𝑜𝑝𝑖𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑
𝑚𝑢𝑙𝑜𝑝

𝑠𝑐𝑎𝑙𝑒𝑚𝑢𝑙𝑜𝑝
+ 𝑧𝑚𝑢𝑙𝑜𝑝 =

𝑟𝑜𝑢𝑛𝑑
𝑎𝑖−𝑧𝑎 ∙ 𝑏𝑖−𝑧𝑏 ∙𝑠𝑐𝑎𝑙𝑒𝑎𝑏

𝑠𝑐𝑎𝑙𝑒𝑚𝑢𝑙𝑜𝑝
+ 𝑧𝑚𝑢𝑙𝑜𝑝 (4)

q_op_1

a_i8 = q(a_f32)

q_op_2

q_op_3

x_f32 = d(x_i8)

b_i8 = q(b_f32)

Integer only

𝑠𝑐𝑎𝑙𝑒𝑎𝑏 =
!
𝑠𝑐𝑎𝑙𝑒𝑚𝑢𝑙𝑜𝑝

Imagimob’s Solution

Difficult optimization problems can in computer science

sometimes be solved using a heuristic approach, which means

that with the help of the computer we try to find an approximate

solution to a difficult problem. These solutions do not claim that

they find the optimal solution to the problem, but the solution can

often be good enough to work in practice.

For Full integer quantization all values in the above expression

shall be integers, so that they can efficiently be computed and

stored on non-FPU MCUs. Using fixed-point multiplications or

shifting for the division these operations can be efficiently

handled.

Fig. 1. Quantizing a continuous signal.

Fig. 2. Simple rounding generates a large quantization error.

Fig. 3. Working with the full range gives a smaller quantization error.

Fig. 4. All internal operations are done in integer arithmetics.

Fig. 5. A trained model is converted to quantized C code with no floating-point calculations.

