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Agenda:

● Performance (latency, memory footprint, power consumption):
○ Streaming

■ Functional API
■ Subclass API

○ Quantization
■ Post training quantization
■ Quantization aware training

● Fake
● Native

● Applications:
○ Hotword detection:

■ Multihead self attention
■ Matchbox

○ Streaming multihead self attention
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Streaming aware model:
net = Stream(cell=tf.keras.layers.Conv2D(...))(net) 
net = Stream(cell=tf.keras.layers.Flatten(...))(net) 
net = tf.keras.layers.Dense(...)(net)

Functional API:

Non streaming model:
net = tf.keras.layers.Conv2D(...)(net)
net = tf.keras.layers.Flatten(...)(net) 
net = tf.keras.layers.Dense(...)(net)

Applications:
● Real-time Speech Frequency Bandwidth Extension. Yunpeng Li et al 
● SoundStream: An End-to-End Neural Audio Codec. Neil Zeghidour, et al 
● Streaming keyword spotting on mobile devices. Oleg Rybakov, et al
● Real time spectrogram inversion on mobile phone. Oleg Rybakov, et al
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Subclass API, lingvo, keras
  def __init__(self, label_count, apply_quantization, **kwargs):

    self.conv = ring_buffer.RingBuffer(quantize.quantize_layer(tf.keras.layers.Conv2D()))  # Create quantization, streaming aware 
layer

  def call(self, inputs): # Forward propagation for model training

    net = self.conv(inputs)

    return net

  def stream_inference(self, inputs, states): # Inference in streaming mode

    net, output_state = self.conv(net, state=states)

    return net, output_state



Edge cases: causal vs non causal conv
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Why model quantization?

● Speed up computation.
● Reduce memory footprint.
● Reduce power consumption.



Post training quantization(PTQ)  with TFLite

● Pros:
○ Dynamic quantization easy to use, works on most models.
○ With int8 quantization can give speed up: 1.5x…4x e.g. on hotword models.
○ Supports full model quantization, but needs representative data sets.

● Cons:
○ Does not support lower bits e.g. int4.
○ There is numerical difference between float and quantized models.
○ On more complicated model e.g. auto-regressive models numerical difference can increase.



Fake quantization aware training(QAT)

● Pros:
○ Supports lower than 8bits quantization (inference engine also has to support it).
○ Does not need calibration data for full model quantization (vs post training quantization).
○ Easy to use on functional tf.keras.

● Cons:
○ During model training it uses fake quantization (uses float ops), if results of float summation 

and multiplication does not fit into 23 bits mantissa there will be a numerical difference 
between forward propagation in training and inference modes (when integer runs with int ops).

○ After model training it needs post training quantization step which will convert float ops to int 
ops.

float int8(weight * scale_w)

scale_w * scale_a

float int8(act * scale_a)matmul ,

“Emulates dequantization”

int8(x) = np.round(np.clip(x, -127, 127))



Native quantization aware training(QAT)

● Pros:
○ What you train is what you serve: no need in post training quantization step.
○ Speed up not only for inference but for training too (will use int8, int4 ops).
○ Forward propagation during training and inference are numerically the same.

● Cons:
○ User will have to manage quantized types and variables (need int8/int4 types), including 

custom gradients for int ops.

int8(weight * scale_w), int8(act * scale_a)

scale_w * scale_a

matmul



● int8 activation + int8 weights. QAT and PTQ works.
● int8 activation + int4 weights. only QAT works on most models.
● int4 activation + int4 weights. only QAT mostly works on very large models, 

can require some model tuning.
● < int4 needs significant model modifications. e.g. PokeBNN

Observations:



Applications: Hotword detection

Model Pixel4 CPU[ms]
Latency of 
processing 1 sec 
in non streaming 

Pixel4 CPU[ms]
Latency of 
processing 20ms in 
streaming mode

Accuracy[%] # Parameters

MHAtt-RNN (non causal) 13 N/A 98.4 750K

Matchbox (non causal) 3.0 N/I 98.0 75K

Matchbox (causal) 3.0 0.2 97.4 75K

Google Speech commands data V2 with 12 labels: 
”yes”, ”no”, ”up”, ”down”, ”left”, ”right”, ”on”, ”off”, ”stop”, and ”go”; “silence” “unknown”



Transformer single head self attention (causal)
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Hotword detection

Conv + biLSTM

Multi Head Self attention

MHAtt-RNN (non causal) Matchbox (non causal)

Residual Depthwise conv

GlobalAveragePooling2D
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No attentionSelf Attention
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Streaming Multihead Self Attention
[B=1, T=1, D=6]
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Conformer encoder for ASR, S2S.

Processing Audio every 20ms with Speech frontend and Conformer Encoder (17 conformer layers with causal local 
attention = 60).

conformer encoder Pixel6 CPU[ms] with TFLite

float32 31ms/960MB

post-quantized (int8) 13ms/160MB
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Appendix



Design patterns for Stream layer

● Buffer: RNN layers: GRU, LSTM
● Ring buffer: Conv1D, Conv2D, DepthwiseConv2D, Flatten, 

GlobalMaxPooling2D, GlobalAveragePooling2D layers
● Remainder buffer: Conv1DTranspose
● …
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