
March 28-30, 2022 | San Francisco Bay Area

Miniature dreams can come true…

Speech models design and
deployment on device.

Oleg Rybakov
rybakov@google.com
Catalyst team

Agenda:

● Performance (latency, memory footprint, power consumption):
○ Streaming

■ Functional API
■ Subclass API

○ Quantization
■ Post training quantization
■ Quantization aware training

● Fake
● Native

● Applications:
○ Hotword detection:

■ Multihead self attention
■ Matchbox

○ Streaming multihead self attention

State1

State2

Dense

t

Input sample

Convolution 3x3

Model streaming (using ring buffers: State1, State2):

t-1

t-1

t+1

t+1

Previous State1

Previous State2

RingBuffer

Next State1

Next State2

Streaming aware model:
net = Stream(cell=tf.keras.layers.Conv2D(...))(net)
net = Stream(cell=tf.keras.layers.Flatten(...))(net)
net = tf.keras.layers.Dense(...)(net)

Functional API:

Non streaming model:
net = tf.keras.layers.Conv2D(...)(net)
net = tf.keras.layers.Flatten(...)(net)
net = tf.keras.layers.Dense(...)(net)

Applications:
● Real-time Speech Frequency Bandwidth Extension. Yunpeng Li et al
● SoundStream: An End-to-End Neural Audio Codec. Neil Zeghidour, et al
● Streaming keyword spotting on mobile devices. Oleg Rybakov, et al
● Real time spectrogram inversion on mobile phone. Oleg Rybakov, et al

Stream(cell=tf.keras.layers.Conv2D(...))

Stream(cell=tf.keras.layers.Flatten(...))

tf.keras.layers.Dense(...)

Input [1, 16000]

tf.keras.layers.Conv2D(...)

tf.keras.layers.Flatten(...)

tf.keras.layers.Dense(...)

Input [1, 200]

RingBuffer

RingBuffer

Streaming aware model
(trained in non streaming mode)

Streaming inference

Subclass API, lingvo, keras
 def __init__(self, label_count, apply_quantization, **kwargs):

 self.conv = ring_buffer.RingBuffer(quantize.quantize_layer(tf.keras.layers.Conv2D())) # Create quantization, streaming aware
layer

 def call(self, inputs): # Forward propagation for model training

 net = self.conv(inputs)

 return net

 def stream_inference(self, inputs, states): # Inference in streaming mode

 net, output_state = self.conv(net, state=states)

 return net, output_state

Edge cases: causal vs non causal conv

Conv()

Conv()

Causal Conv Non causal Conv

+

+

Delay()

Why model quantization?

● Speed up computation.
● Reduce memory footprint.
● Reduce power consumption.

Post training quantization(PTQ) with TFLite

● Pros:
○ Dynamic quantization easy to use, works on most models.
○ With int8 quantization can give speed up: 1.5x…4x e.g. on hotword models.
○ Supports full model quantization, but needs representative data sets.

● Cons:
○ Does not support lower bits e.g. int4.
○ There is numerical difference between float and quantized models.
○ On more complicated model e.g. auto-regressive models numerical difference can increase.

Fake quantization aware training(QAT)

● Pros:
○ Supports lower than 8bits quantization (inference engine also has to support it).
○ Does not need calibration data for full model quantization (vs post training quantization).
○ Easy to use on functional tf.keras.

● Cons:
○ During model training it uses fake quantization (uses float ops), if results of float summation

and multiplication does not fit into 23 bits mantissa there will be a numerical difference
between forward propagation in training and inference modes (when integer runs with int ops).

○ After model training it needs post training quantization step which will convert float ops to int
ops.

float int8(weight * scale_w)

scale_w * scale_a

float int8(act * scale_a)matmul ,

“Emulates dequantization”

int8(x) = np.round(np.clip(x, -127, 127))

Native quantization aware training(QAT)

● Pros:
○ What you train is what you serve: no need in post training quantization step.
○ Speed up not only for inference but for training too (will use int8, int4 ops).
○ Forward propagation during training and inference are numerically the same.

● Cons:
○ User will have to manage quantized types and variables (need int8/int4 types), including

custom gradients for int ops.

int8(weight * scale_w), int8(act * scale_a)

scale_w * scale_a

matmul

● int8 activation + int8 weights. QAT and PTQ works.
● int8 activation + int4 weights. only QAT works on most models.
● int4 activation + int4 weights. only QAT mostly works on very large models,

can require some model tuning.
● < int4 needs significant model modifications. e.g. PokeBNN

Observations:

Applications: Hotword detection

Model Pixel4 CPU[ms]
Latency of
processing 1 sec
in non streaming

Pixel4 CPU[ms]
Latency of
processing 20ms in
streaming mode

Accuracy[%] # Parameters

MHAtt-RNN (non causal) 13 N/A 98.4 750K

Matchbox (non causal) 3.0 N/I 98.0 75K

Matchbox (causal) 3.0 0.2 97.4 75K

Google Speech commands data V2 with 12 labels:
”yes”, ”no”, ”up”, ”down”, ”left”, ”right”, ”on”, ”off”, ”stop”, and ”go”; “silence” “unknown”

Transformer single head self attention (causal)

Keys:

Local speech feature emb:

Query

Softmax:

X X X

Input speech:

* * *Values:

+

Wv Wv Wv

Wk Wk Wk Wq

Hotword detection

Conv + biLSTM

Multi Head Self attention

MHAtt-RNN (non causal) Matchbox (non causal)

Residual Depthwise conv

GlobalAveragePooling2D

L E F T

No attentionSelf Attention
Softmax values

Streaming Multihead Self Attention
[B=1, T=1, D=6]

Value projection
[B=1, T=1, N=3, H=2]

Key projection
[B=1, T=1, N=3, H=2]

Query projection
[B=1, T=1, N=3, H=2]

Ring Buffer
[B=1, S=5, N=3, H=2]

Ring Buffer
[B=1, S=5, N=3, H=2]

einsum
BTNH,BSNH->BTNS

[B=1, T=1, N=3, S=5]

Softmax(in time)
[B=1, T=1, N=3, S=5]

logit

einsum
BSNH,BTNS->BTNH

[B=1, T=1, N=3, H=2]

Output projection
[B=1, T=1, D=6]

posteriors

(t) Value

Key

Query
Keys

ValueS

(t-1) Values
[B=1, S=5, N=3, H=2]

(t-1) Keys
[B=1, S=5, N=3, H=2]

(t+1) Values

(t+1) Keys

Conformer encoder for ASR, S2S.

Processing Audio every 20ms with Speech frontend and Conformer Encoder (17 conformer layers with causal local
attention = 60).

conformer encoder Pixel6 CPU[ms] with TFLite

float32 31ms/960MB

post-quantized (int8) 13ms/160MB

References

● Yunpeng Li et al Real-time Speech Frequency Bandwidth Extension.
● Oleg Rybakov, et al Streaming keyword spotting on mobile devices.
● Neil Zeghidour, et al SoundStream: An End-to-End Neural Audio Codec.
● Oleg Rybakov, et al Real time spectrogram inversion on mobile phone.
● Somshubra Majumdar, et al MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture

for Speech Commands Recognition.
● Anmol Gulati et al Conformer: Convolution-augmented Transformer for Speech Recognition.
● Benoit Jacob et al, Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
● AmirAli Abdolrashidi et al, Pareto-Optimal Quantized ResNet Is Mostly 4-bit
● Zhewei Yao et al, HAWQ-V3: Dyadic Neural Network Quantization
● Yichi Zhang et al, PokeBNN: A Binary Pursuit of Lightweight Accuracy
● Hao Wu, LOW PRECISION INFERENCE ON GPU
● Pete Warden, Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
● https://www.tensorflow.org/lite
● https://github.com/tensorflow/lingvo/blob/master/lingvo/core/conformer_layer.py
● https://github.com/tensorflow/lingvo/blob/master/lingvo/core/batch_major_attention.py
● https://github.com/google-research/google-research/blob/master/kws_streaming
● https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide

Appendix

Design patterns for Stream layer

● Buffer: RNN layers: GRU, LSTM
● Ring buffer: Conv1D, Conv2D, DepthwiseConv2D, Flatten,

GlobalMaxPooling2D, GlobalAveragePooling2D layers
● Remainder buffer: Conv1DTranspose
● …

tinyML Summit 2022 Sponsors

Copyright Notice
This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

