PhiNets

Francesco Paissan, **Alberto Ancilotto**, **Elisabetta Farella**

Fondazione Bruno Kessler (FBK) – Energy Efficient Embedded Digital Architectures Unit

What is the main contribution of PhiNets?

PhiNets:
- are small footprint, scalable neural networks;
- have a computationally efficient convolutional block (modified version of the inverted residual block);
- can exploit hardware-aware scaling.

In particular, with PhiNets we propose to invert the Hardware Constrained Scaling paradigm and replace it with the **Hardware Aware Scaling** paradigm, which allows for one-shot generation of the neural architectures given the MCU’s computational constraints.

PhiNets resource usage

FLASH usage

The FLASH usage is determined by the parameter count of the network. In particular, for PhiNets, this scales linearly with the shape factor.

Figure of the PhiNets convolutional block

The PhiNets hyperparameters are:
- the number of convolutional blocks \(B\) used in the backbone;
- the width multiplier \(s\), which controls the number of channels in the feature maps;
- the base expansion factor \(d\), which controls the expansion ratio inside the convolutional blocks;
- the shape factor \(\beta\) which helps in fine-tuning the memory used by the network.

Figure showing the RAM usage determined by the biggest tensor in memory during inference. For PhiNets, this scales linearly with the expansion factor.

PhiNets for multimedia analytics

Multi-Object Detection

Consists of detecting and classifying objects in video streams. The proposed Multi-Object Detection pipeline is composed of a PhiNet backbone coupled with a YOLOv2 detection head. PhiNets have state-of-the-art performance in object detection in the MCU range.

Figure showing the multi-add count during one inference step.

The multi-add count is by many factors during one inference step. In particular, this controls the inference rate of the PhiNets-based pipelines. As depicted, this scales quadratically with the width multiplier and input resolution and linearly with the number of blocks.

Sound Event Detection

Performs detection of events from audio monaural signals. In this setup, the PhiNet backbone is coupled with a classifier for the 10-classes classification.

Figure showing the demo device.

Image-to-image translation

We applied PhiNets to port Generative Adversarial Networks on MCUs for the task of face-swapping. Our approach uses only 76K params and 40M multi-adds and was successfully implemented on a K210 MCU at 20fps.

Conclusions

- PhiNets advanced scaling principles enable porting application to varying hardware platforms without the need of training many neural networks and select the feasible ones;
- PhiNets have state-of-the-art or near-SoA performance in many multimedia analytics tasks for both video and audio;
- With PhiNets, we were able to port GANs on microcontroller units;
