Mixed Intra Layer CNN Quantization for CIM Architectures

Fraunhofer IPMS, Center Nanoelectronic Technologies, An d. Bartlak 5 01109 Dresden/Germany
alptekin.vardar@ipms.fraunhofer.de / thomas.kaempfe@ipms.fraunhofer.de

Edge Computing

- Data at the edge is produced continuously. This makes it more efficient to process there, which can integrate the decision making by NIs with the sensors and actuators for fast automated responses [2].
- Operations like dot-products can be accelerated using special programmed memory arrays, called Processing Elements (PE). This helps to achieve high parallelism while decreasing data traffic.

Convolutional Neural Networks (CNN)

- In computer vision tasks, such as image classification, object detection or segmentation, CNNs have achieved state-of-the-art performance due to their shift-invariant ability to capture representative patterns.
- The convolution operation is the result of sliding the convolution kernel across the input matrix of the layer to produce a feature map which is the input of the next layer.
- As convolution and pooling takes into account spatial relations between features, convolutional neural networks are ideal for data with a grid-like structure, such as images.

Quantized Neural Networks (QNN)

- Quantization is a common way to reduce the demand on hardware.
- When the activations are quantized, the number of MAC operations vastly reduces, resulting in a better latency and energy consumption.
- On the other hand, weight quantization decreases both memory footprint and the number of MAC operations, also helping with area reduction.
- To obtain independent quantization of trainable parameters, Keras library is used. Mathematically, the quantization to a given input x is: [3]

$$\text{quantized}(x) = \left\lfloor \frac{2^Q x}{\text{round}(2^Q x)} \right\rfloor$$

- Quantized ReLU options available in Keras

Quantized ReLU options available in Keras

- Previous studies have been done on 8-bit quantization schemes and other fixed lower precision levels. [4]
- Experiments have been conducted using a light-weight network on the CIFAR10 dataset [5].
- Adapting an intra-layer mixed quantization training technique for both weights and activations, with respect to layer sensitivities, a memory reduction of 2/8 times and a number of MAC operation reduction of 2/30 times can be achieved compared to their 8bit/FP32 counterparts while sacrificing virtually no accuracy against 8bit and around 2% against the FP32 model.

Architecture of the used neural network

Weight and Activation Quantization

- The experiments showed that the tradeoff between accuracy and quantization differs in each layer. We call this layer sensitivity.
- For example, middle layers are much more robust to quantization whilst also housing majority of the weights.
- As shown in Figure, majority of the MAC operations are conducted in the second, third and fourth convolutional layers.
- Using mixed2 scheme, more than 3 times saves is achieved at the MAC operations. Hence, the energy consumption and latency numbers can also be significantly reduced with only sacrificing 0.2% accuracy.
- Layer wise distribution of multiply-accumulate (MAC) operations

In the next Figure, the distribution of weights per layer is shown.
- It is clear that the majority of weights reside in the first dense layer, followed by the fourth convolutional layer.
- These are also some of the least sensitive layers. Meaning, by deeply quantizing these layers, majority of the memory space can be saved.

Layer wise distribution of memory footprint

Mixed Quantization

- In order to achieve the best results, a smart mixture of both techniques should be utilized.
- Depending on the accuracy and resource requirements, ideal configuration can be selected from the given bubble graph.

Effect of mixed quantization on number of MAC operations

Bubble graph of accuracy vs memory vs quantization

For a more detailed analysis of the effect of each quantization combination, the table shows the change in both the training and testing accuracy with respect to saved MAC operations and memory space.

<table>
<thead>
<tr>
<th>Name</th>
<th>Quant.</th>
<th>Acc.</th>
<th>MB</th>
<th>MAC</th>
<th>MB</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>8bit</td>
<td>66.12</td>
<td>80.56</td>
<td>45.94</td>
<td>16.93</td>
<td></td>
</tr>
<tr>
<td>8bit</td>
<td></td>
<td>64</td>
<td>78.23</td>
<td>14.52</td>
<td>6.58</td>
<td></td>
</tr>
<tr>
<td>4bit</td>
<td></td>
<td>4</td>
<td>59.95</td>
<td>73.39</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>mixed1</td>
<td>8bit/4bit</td>
<td>56.38</td>
<td>77.97</td>
<td>1.40</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>mixed2</td>
<td>8bit/4bit</td>
<td>54.30</td>
<td>76.32</td>
<td>1.47</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>mixed3</td>
<td>8bit/4bit</td>
<td>50.49</td>
<td>77.57</td>
<td>0.76</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>mixed4</td>
<td>8bit/4bit</td>
<td>56.38</td>
<td>77.74</td>
<td>1.49</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>mixed5</td>
<td>8bit/4bit</td>
<td>48.48</td>
<td>77.74</td>
<td>1.47</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>mixed6</td>
<td>8bit/4bit</td>
<td>57.73</td>
<td>77.14</td>
<td>0.76</td>
<td>12.35</td>
<td></td>
</tr>
</tbody>
</table>

References