

LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference

Zhongzhi Yu, Yonggan Fu, Shang Wu, Mengquan Li, Haoran You, Yingyan Lin **Rice University**

Background and Motivation

• Deep neural networks' (DNNs) high performance comes with large DNNs and powerful computers

DNNs

- Deep neural networks (DNNs) are costly:
 - Prohibitive training cost:
 - 10¹⁸ FLOPs for training ResNet-50@ImageNet
 - Excessive inference cost:
 - 10⁹ FLOPs for single-image inference with ResNet-50@ImageNet

Growing demand for ondevice training & inference

Large DNNs with prohibitive training & inference cost

performance

Low-precision Method: a promising direction to narrow the gap

Existing Low-precision Methods

- Static low-precision training: [S. Banner, NeurIPS'18]
 - Use same precision during training process
 - Barge accuracy gap under low-precision
- Temporal dynamic low-precision training: A promising direction [Y. Fu, NeurIPS'20], [Y. Fu, ICLR'21]
 - Assign different precisions for different training stages for better accuracy-efficiency trade-off
 - Only consider temporal dynamic precision
 - Need extra efforts in hyperparams finetuning

Motivating Observations

Is only the temporal dynamic precision enough?

- Inspirations from previous works:
 - Different layers have different sensitivities [C. Zhang, ICML'19] [K. Greff, ICLR'17]
 - Precision has similar effect as learning rate [Y. Fu, ICLR'20]

Spatial dynamic precision allocation is also important

- Exploration on the importance of spatial and temporal precision allocation
 - Settings:
 - Temporal: Change precision at 30, 60, 90 epochs
 - **Spatial**: [a,b,c]: Assign a,b,c-bit to first three blocks, respectively
 - Insights:
 - Both temporal and spatial precision allocations impact the training accuracy-efficiency trade-off.
 - Different combination lead to 0.75% accuracy gap.

	Trainii	Savings over static (%)	Accuracy/%		
[0-th,30-th]	[30-th,60-th]	[60-th,90-th]	[90-th,160-th]	Savings over static (%)	Accuracy/%
[4, 6, 8]	[6, 8, 4]	[8, 4, 6]	[8, 8, 8]	1.10×10^{8}	68.88 ± 0.21
[6, 8, 4]	[8, 4, 6]	[4, 6, 8]	[8, 8, 8]	1.10×10^{8}	69.63 ± 0.14
[8, 4, 6]	[4, 6, 8]	[6, 8, 4]	[8, 8, 8]	1.10×10^{8}	69.36 ± 0.16

How to automatically generate the spatial and temporal precision allocation during training?

Contributions

- Learnable dynamic precision (LDP): a framework to automatically learn the spatial and temporal precision allocation during training
- Develop a differentiable method to enable end-toend learnable dynamic precision DNN training
- Achieve the SOTA accuracy-efficiency trade-off on seven DNNs, five datasets and three tasks in both training and inference

- Automatically learn the spatial and temporal precision allocation during training
- Enabler 1: Differentiable learnable precision
 - Challenge: How to achieve a differentiable precision learning on top of the discrete precision
 - Vanilla quantization process:

Quantization Output = Round(
$$\frac{Input - Zero\ Point}{Quantization\ Step}$$
) + Zero Point

Quantization Step = $\frac{Dynamic\ Range}{2^{Precision} - 1}$

 Use a learnable quantization step with a layer-wise learnable parameter β

Learnable Quantization Step =
$$\frac{\text{Dynamic Range}}{2^{\beta \times \text{Precision}} - 1}$$

- Enabler 2: Loss function design
 - Challenge: Balance accuracy and efficiency when scales of L_{task} and L_{cost} vary among different tasks and during training
 - Penalize training cost when exceeding threshold T
 - Balance each layer's **precision gradient** w.r.t. L_{task} and L_{cost}

LDP: Evaluation

- Seven models on five datasets from three tasks:
 - ResNet@CIFAR for image classification
 - ResNet18/DeiT-Tiny@ImageNet for image classification
 - PAN@Urban-100 for image super-resolution
 - Transformer@Wiki-101 for language modeling
- Three baselines:
 - Static low-precision training: SBM [S Banner, NeurIPS'18]
 - Dynamic low-precision training: PFQ [Y. Fu, NeurIPS'19] & CPT [Y. Fu, ICLR'20]

		Eva	aluation	on CIFAR-100	ı		
■ LDI	P FW3-6/B	sW8	▲ LD	P FW3-8/BW8	•	LDP FW4-8/E	3W8
■ PFQ	FW3-6/B	N6-8		Q FW3-8/BW6-8		PFQ FW4-8/B	W6-8
■ SE	BM FW6/B	W8	▲ S	BM FW8/BW8	•	SBM FW8/B	W8
Re	sNet20@	Cifar100	Resi	Net38@Cifar100	Re	esNet74@Cifa	r100
67.8 (%) 67.6 67.4 67.2 67.0 66.8 0.3		0.13% Acc 9.34% Ops 69. 69. 69.	7 6 5 4	+0.09% Acc -19.13% Ops	71.2 71.0 70.8 70.6 +0.	44% Acc .05% Ops	2.5
-	GBitOP	s	0.0	GBitOPs		GBitOPs	2.5
12	Dataset	s		CIF	AR-100		
Model	Method	Precision	Acc(%)	Training Cost(GBi	tOps) Ir	nference Cost(GE	BitOps)
	SBM	FW8/BW8	69.38	1.33e8		2.69	
	PFQ	FW3-8/BW8 69.50		1.04e8		2.69	
	LDP	FW3-8/BW8	69.77	0.87e8		1.35	
	Improv.		+0.27	-16.3%		-49.8%	
ResNet-38	SBM	FW8/BW8	69.38	1.33e8		2.69	
	PFQ	FW4-8/BW8	69.72	1.07e8		2.69	
	LDP	FW4-8/BW8	69.81	0.87e8		1.33	
	Improv.		+0.09	-18.7%		-50.6%	
	SBM	FW8/BW8	71.05	2.67e8		5.42	
	PFQ	FW3-8/BW8 71.07		2.03e8		5.42	
	LDP	FW3-8/BW8 71.28		1.72e8		2.83	
(a) Salan I make I	Improv.		+0.21	-15.3%		-47.8%	
ResNet-74	SBM	FW8/BW8	71.05	2.67e8		5.42	
	PFQ	FW4-8/BW8	71.15	2.16e8		5.42	
	LDP	FW4-8/BW8	71.21	1.72e8		2.78	
	Improv.		+0.06	-20.4%		-48.7%	

CIFAR-100: **10.44%** accuracy, **129.34%** training cost, **↓50.6%** inference cost

Evaluation on ImageNet ImageNet: **↓30.8%** inference cost and **\8.1%** training cost with comparable accuracy

• WikiText-103: **↓0.96** perplexity (the lower, the better) with $\downarrow 25.9\%$ training cost

Evaluation of Transformer on WikiText-103						
Method	Precision	Perplexity	Training Cost (GBitOps)			
SBM	FW8/BW8	31.77	9.87e5			
LDP	FW4-8/BW8	30.81	7.31e5			
Improv.		-0.96	-25.9%			
	Method SBM LDP	Method Precision SBM FW8/BW8 LDP FW4-8/BW8	Method Precision Perplexity SBM FW8/BW8 31.77 LDP FW4-8/BW8 30.81			

LDP: Visualization

• Vis. 1: Learned precision is consistent with manual design [J. Shen, AAAI'20] [Y. Wang, ISP'20]

Precision Vis. 1: ResNet-38@CIFAR-100 block-wise Higher precision in average precision

lokens

The state of the state

- Blocks after downsampling Deep blocks with lowest
- Vis. 2: Learned precision can

spatial resolution

- guide model design Decreased precision (higher redundancy) in
 - the last two FC layers
- Vis. 2: DeiT-Tiny@ImageNet layerwise average precision
- Consistent with the work studying FC layers [J. Guo, arXiv'21]