Background and Motivation

- Deep neural networks’ (DNNs) high performance comes with **large DNNs and powerful computers**
 - Powerful computers + Large DNNs + High DNN performance
- Deep neural networks (DNNs) are **costly**:
 - Prohibitive training cost:
 - 10^4 FLOPs for training ResNet-50@ImageNet
 - Excessive inference cost:
 - 10^4 FLOPs for single-image inference with ResNet-50@ImageNet

Growing demand for on-device training & inference: Large DNNs with prohibitive training & inference cost

Low-precision Method: a promising direction to narrow the gap

Existing Low-precision Methods

- **Static low-precision training**: [J. Rennie, NeurIPS'18]
 - Use same precision during training process
 - Large accuracy gap under low-precision
- **Temporal dynamic low-precision training**: A promising direction [Y. Fu, NeurIPS'20] [Y. Fu, ICLR'21]
 - Assign different precisions for different training stages for better accuracy-efficiency trade-off
 - Only consider **temporal** dynamic precision
 - Need extra efforts in hyperparams finetuning

Motivating Observations

- Is only the **temporal** dynamic precision enough?
- Inspirations from previous works:
 - Different layers have different sensitivities [Y. Fu, KDD'17]
 - Precision has similar effect as learning rate [Y. Fu, ICLR'20]

Spatial dynamic precision allocation is also important

Exploration on the importance of **spatial and temporal precision allocation**

- Settings:
 - **Spatial**: Assign a,b,c-bit to first three blocks, respectively
 - **Temporal**: Change precision at 30, 60, 90 epochs
- Insights:
 - Both **temporal** and **spatial** precision allocations impact the training accuracy-efficiency trade-off.
 - Different combination lead to 0.75% accuracy gap.

How to automatically generate the **spatial and temporal precision allocation during training?**

- Learnable dynamic precision (LDP): a framework to automatically learn the **spatial and temporal** precision allocation during training

Contributions

- Learnable dynamic precision (LDP): a framework to automatically learn the **spatial and temporal** precision allocation during training
- Develop a differentiable method to enable **end-to-end** learnable dynamic precision DNN training
- Achieve the SOTA accuracy-efficiency trade-off on seven DNNs, five datasets and three tasks in both training and inference

LDP: Learning Dynamic Precision for Efficient Deep Neural Network Training and Inference

Zhongzhi Yu, Yonggan Fu, Shang Wu, Mengquan Li, Haoran You, Yingyan Lin
Rice University

LDP: Method

- Automatically learn the **spatial and temporal** precision allocation during training
- **Enabler 1**: Differentiable learnable precision
 - Challenge: How to achieve a differentiable precision learning on top of the discrete precision
 - Vanilla quantization process:
 - Quantization Output = Roundn
 - Quantization Step = \(\text{Precision} / \text{Number of quantization steps} \)
 - Use a learnable quantization step with a layer-wise learnable parameter \(\beta \)

LDP: Evaluation

- **Seven models on five datasets from three tasks**:
 - ResNet@CIFAR for image classification
 - ResNet8/DeiT-Tiny@ImageNet for image classification
 - PAN@Urban-100 for image super-resolution
 - Transformer@Wiki-101 for language modeling
- **Three baselines**:
 - Static low-precision training: SBM [Y. Fu, NeurIPS'18]
 - Dynamic low-precision training: PFQ [Y. Fu, NeurIPS'19]
 - & CPT [Y. Fu, ICLR'20]

LDP: Visualization

- **Vis. 1**: Learned precision is consistent with manual design
 - Strong, APA2020/F Wang, SP'20
 - Higher precision in
 - Blocks after downsampling
 - Deep blocks with lowest spatial resolution
- **Vis. 2**: Learned precision can guide model design
 - Decreased precision (higher redundancy) in the last two FC layers
 - Consistent with the work studying FC layers [G. Gra, arXiv'17]