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Figure from Lin et al. Focal loss for dense object detection. CVPR 2017
* Filter pruning:
* Modified the loss function to identify the filters not contributing

We reduced RetinaNet architecture significantly:
— » Substituted ResNet backbone with MobileNetV2
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Overhead person detection system » Used a single scale for regression and classification heads plending « Removed filters with small £,-Norm
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+ Runs for multiple years on batteries aoduliiiens »  We use domain adaptation for training our model @ i o
MACs 148 M I M 22 M 41 M + We first pre-train the network on COCO 2017 person detection - TN | = comayer
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. Emergmg batte ry- Lin et al. Microsoft COCO: Common obijects in context. ECCV, 2014
powered audio and vision Control and Communication Interfaces We collected our own dat’?lset | | o o
joT products « 18 rooms from Synaptics offices, with variations in lighting, For evaluation, we use the standard S—
furniture, and person appearance: precision recall metrics. However, since LYo > eopie Lounting
Challenges * 13 rooms for training | we expect the person counting application ™ . . . . .
+  Limited compute and memory for Al at the edge » 5 rooms for validation and testing we report the average recall for the count the number of people entering and exiting the scene
+ Data » Total of 39 people We refer to this metric as Average Recall. = & & © across the frames in order to create tracks
— No publicly available databases of overhead person A ] j Womﬁr:; 27 men i T truth bounding b
— Requires collection and annotation of large amounts of ) .nnotate cach frame with ground truth bounding boxes T il EniosessieEote =
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* As the office environment has similar flooring, we increased
diversity in flooring by using sheets \
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Model Average Recall (AR) + \We designed a compact overhead people detection neural
KatanaNet 0.983 -
o _ , network for the Synaptics Katana SoC
KatanaNet without background augmentation 0.958 (—2.5%) C f lable t t t of the Kat
| KatanaNet without background blending 0.968 (—1.5%) urrently avallable to our CUSIOMETs as part of (he Ratana
| | F) J KatanaNet without domain adaptation 0.804 (—18.2%) EVK
Example overhead images of people captured by our system Example room from our data collection, in a variety of configurations Ablation study: The contribution of the training elements in the performance
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