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o Keyword Spotting (KWS) relates to identification of Keywords in o Google speech commands dataset [2] contains 30 different classes of The design consists of four distinct parts: o Our experiments were carried out on the Xilinx Artix-7 200t part for an
utterances (‘Hey Sir’, 'Ok Google’, etc.). audios. - Processing Engine (PE) Array - Address Generator operating frequency of 100 MHz.
Vo stant devi ) 1t o o Audios have a duration ranging from 0.5s to 1s and contain keywords - Maxpooling Block and - Memories o Artix-7 200t has 365 BRAMs (36Kb) = 1.64 MB of space.
© bo’lfe a|§f5|s ant devices are power hungry and thus are a burden on such as ‘Yes’, ‘No’, ‘Up’, ‘Down’, etc. Maxpooling layer uses bubble-sort strategy to sort the max value.
attery lire. , , , , . Table:4 Implementation Results of Different Workloads on the
Y o Audios are converted to MFCC spectrogram using librosa library [3]. The de3|gq can bg extended to any numbgr of | PEs. Qur Artix-7 200t FPGA at 100 MHz
o However, KWS networks can act as a triggering mechanism for voice o Spectrogram input reduces computation for the CNN network. implementations consider 16s as PE value where s is the filter scaling. (9,5) | (PM) | BRAM |Pwr (W)| GOPJ | Latency (ms)
. L . . . . . . implici ipliers | 40,1.0)| (16,8 18 | 028 | 40.1 0.31
assistant devices to become active. In that way voice assistant devices o Audios are sampled at 22KHz with default values for MFCC For simplicity of we use only 8 multipliers in each PE. E 102 o; 232 8; =1 1 038 | 796 142
‘ ) T Control Logi U,4L. ) . . .
do not have be always ‘on’. parameters. Output spectrograms have a 44 x 13 shape. :"‘; :’" - d°g'° (4.04.0) 64,8 | 165 | 076 | 98.9 0.65
ully Connecte
e T 4.0,4.5)| (72,8) | 185 | 0.83 | 104.9 0.7
. . Table 1: F k used on the Google Speech C d Address Genera! (
o However, KWS networks themselves need to be lightweight to enhance : ¢ 1 Framewor useK on |seh oogle pee"#F.lt"mma" sSt - jio oo aaee Lo 8010\ (168) | 27 | 045 | 249 031
battery life. ayer ernel Shape ilters ride e Generator N (8.0,2.0)| (32,8) 89 0.68 44.5 0.42
Conv2D 3 X3 bds 1 N N . (8040)| (648) | 206 | 147 | 511 0.65
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o Making KWS networks lightweight require extensive parameter Conv2D 3x3 325 1 [Maxpoating Gontrl Logic] _ Block TN | | |
optimization. Maxpool2D 22 32s 2 v —— v o We reduce the memory requirements by choosing a 4-bit
MCOHVQED gxg 223 ; """ > — implementation which also allows our design to have an energy and
, , . axpoo X S Outout 1 . ” . ,
o We propose a regression-oriented network exploration approach that Fully Connected _ 64 _ i i energy efficiency advantage of around 2.1x and 4x respectively
leads to suitable parameter selection for efficient deployment on FPGA, Fully Connected : toutput : e compared to [4].
i i ' ' Total Computations A
resource constrained edge devices or commodity microcontrollers. (MiIIicE)ns) 3.06 s° w N [N, Table:5 Comparison of our NN (q=4,5=4.5) implementation on the
: = XC7A200T platform to recent KWS hardware implementations.
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Figure:3 The high-level _overviewlof the proposed accelerator de§ign. The feature map memory forwards input Accura cy (% ) 881 376 90 1
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1 resoluton of the inputs KWS example, we train 12 different models where q € {2,4,8} & s € e e e o e e o of rcson odel Size (KB) | 150 497 340
’ {0.5,1,2,4}. Power (W) 1.04 - 047 | 0.83
- depthl ofthe network, o ltis thus possible to determine the accuracy results of the untrained Regression on Energy LC'?CK (MHz) ‘1‘743 21126 ‘11743 100;)
[ sparsity of the network, and combinations by running regression on the 12 data points and fitting the Eang:g ((rr:j’)) 40 _ 053
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o Usually, low precision (q) CNNs have increased number of filters (s) in 4 _Ag.q.5+ As.s+A4.q+ Aj . . . .
ccuracy (NN(q,s)) = o The first and second term in the first parenthesis corresponds to :
each layer to compensate for accuracy loss. q.s + Az.s + A1.q + Ay e " . Conclusion
e T o | | Th del trained for 100 hs with Ad fimi multiplication and addition power. The third and fourth term relates to
o Similarly, CNNs with single precision floating point have reduced ©  1he MOodaels are trained for 10U €pochs with Atam optimizer. ot d sta el
y ™ . | The learning rate reduces by 0.1 every 33 epochs memory communication power and static power, respectively.
number of filters to compensate for high power consumption. © | | ' ' ' o This setup allows a fast approach to obtain the near optimal
o Quantization is performed with the Qkeras Library o The terms in the second parenthesis correspond to latency of the first p PP p
o There is a sweet-spot between quantization (q) and filter scaling (s) that o We adopted the least square method for regressic;n (RMSE=0.9) and rest of the layers, respectively. configuration for desired accuracy and energy specifications for KWS.
leads to near optimum results for both accuracy and power o The near-optimal configuration (q=4.0, s=4.5) is defined by the minima o We can enhance the objective function with multiple objectives instead
consumption. | (A) ___ Google Speech Commands (B) of the convex contour curve (red line). of focusing on single objective solution as a future direction.
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