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Introduction

o Keyword Spotting (KWS) relates to identification of Keywords in
utterances (‘Hey Siri’, ‘Ok Google’, etc.).

o Voice assistant devices are power hungry and thus are a burden on
battery life.

o However, KWS networks can act as a triggering mechanism for voice
assistant devices to become active. In that way voice assistant devices
do not have be always ‘on’.

o However, KWS networks themselves need to be lightweight to enhance
battery life.

o Making KWS networks lightweight require extensive parameter
optimization.

o We propose a regression-oriented network exploration approach that
leads to suitable parameter selection for efficient deployment on FPGA,
resource constrained edge devices or commodity microcontrollers.

Problem Formulation

o The major factors that influence the power consumption of a deployed
CNN can be listed as:

q scaling of the filters,
q quantization of the weights and data,
q resolution of the inputs,
q depth of the network,
q sparsity of the network, and
q interconnection between layers

o Usually, low precision (q) CNNs have increased number of filters (s) in
each layer to compensate for accuracy loss.

o Similarly, CNNs with single precision floating point have reduced
number of filters to compensate for high power consumption.

o There is a sweet-spot between quantization (q) and filter scaling (s) that
leads to near optimum results for both accuracy and power
consumption.

o We can make the following inferences for a deployed CNN:
v 𝑁𝑁 𝑠𝑖𝑧𝑒 ∝ 𝑞. 𝑠!

v 𝑁𝑁 𝑙𝑎𝑟𝑔𝑒𝑠𝑡_𝑓𝑚𝑎𝑝 ∝ 𝑞. 𝑠
v 𝑁𝑁 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ∝ 𝑠!

v 𝑁𝑁 𝑀𝑢𝑙𝑡_𝑂𝑝_𝐶𝑜𝑠𝑡 ∝ 𝑞". 𝑠!

v 𝑁𝑁 𝐴𝑑𝑑_𝑂𝑝_𝐶𝑜𝑠𝑡 ∝ 𝑞. 𝑠!

v𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁𝑁 𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑐𝑜𝑛𝑓𝑖𝑔 ∈ 𝑃,𝑀, 𝑞, 𝑠 [1]
o This minimizes the energy generated for inference of these models

provided that the target accuracy is maintained. Here, P and M
correspond to the number of processing engines and multipliers of the
hardware.

Dataset and Framework

o Google speech commands dataset [2] contains 30 different classes of
audios.

o Audios have a duration ranging from 0.5s to 1s and contain keywords
such as ‘Yes’, ‘No’, ‘Up’, ‘Down’, etc.

o Audios are converted to MFCC spectrogram using librosa library [3].
o Spectrogram input reduces computation for the CNN network.
o Audios are sampled at 22KHz with default values for MFCC

parameters. Output spectrograms have a 44 x 13 shape.

Regression on Accuracy

o Train the CNN network for different configurations of q and s. For this 
KWS example, we train 12 different models where 𝑞 ∈ 2,4,8 & 𝑠 ∈
{0.5,1,2,4}.

o It is thus possible to determine the accuracy results of the untrained 
combinations by running regression on the 12 data points and fitting the 
following rational polynomial:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑁𝑁 𝑞, 𝑠 ≈
𝐴#. 𝑞. 𝑠 + 𝐴$. 𝑠 + 𝐴%. 𝑞 + 𝐴&
𝑞. 𝑠 + 𝐴!. 𝑠 + 𝐴'. 𝑞 + 𝐴(

o The models are trained for 100 epochs with Adam optimizer.
o The learning rate reduces by 0.1 every 33 epochs.
o Quantization is performed with the Qkeras Library.
o We adopted the least square method for regression (RMSE=0.9).

Accelerator Design

o The design consists of four distinct parts:
- Processing Engine (PE) Array - Address Generator
- Maxpooling Block and - Memories

o Maxpooling layer uses bubble-sort strategy to sort the max value.
o The design can be extended to any number of PEs. Our

implementations consider 16s as PE value where s is the filter scaling.
For simplicity of we use only 8 multipliers in each PE.

Regression on Energy

𝐸𝑛𝑒𝑟𝑔𝑦 𝐻𝑊 𝑞, 𝑠 ≈ (𝐵&. 𝑞!. 𝑠! + 𝐵!. 𝑞. 𝑠! + 𝐵'. 𝑞. 𝑠 + 𝐵()(𝐷. 𝑠 + 𝐸)
o The first and second term in the first parenthesis corresponds to 

multiplication and addition power. The third and fourth term relates to 
memory communication power and static power, respectively.

o The terms in the second parenthesis correspond to latency of the first 
and rest of the layers, respectively.

o The near-optimal configuration (q=4.0, s=4.5) is defined by the minima 
of the convex contour curve (red line).

Results and Comparison

o Our experiments were carried out on the Xilinx Artix-7 200t part for an
operating frequency of 100 MHz.

o Artix-7 200t has 365 BRAMs (36Kb) = 1.64 MB of space.

Conclusion

o This setup allows a fast approach to obtain the near optimal
configuration for desired accuracy and energy specifications for KWS.

o We can enhance the objective function with multiple objectives instead
of focusing on single objective solution as a future direction.

o It is also possible to implement the setup with different combinations of
network parameters in which case the problem might need a different
solution as opposed to regression to get a near-optimal result.

o We can also use synthetic data from GANs to increase the number of
datapoints for better curve fitting.
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Table 1: Framework used on the Google Speech Commands
Layer Kernel Shape #Filters Stride

Conv2D 3 x 3 64s 1
Maxpool2D 2 x 2 64s 2

Conv2D 3 x 3 32s 1
Maxpool2D 2 x 2 32s 2

Conv2D 3 x 3 32s 1
Maxpool2D 2 x 2 32s 2

Fully Connected - 64s -
Fully Connected - #output -

Total Computations 
(Millions) 3.06 s2

Model Size (KB) 4.20 qs2

Largest Feature Map (KB) 3.70 qs

Figure:2 This figure illustrates the accuracy modeling setup based on empirical analysis for Google speech
commands. (A) represents the accuracy experienced from training different (q,s) configurations, (B) illustrates
the surface plot indicating the fit for the accuracy regression equation, and (C) demonstrates a better
visualization of the relationship between accuracy, scaling, and precision through contours.

Figure:1 A high level overview of the required steps for experimental and analytical approach of our proposed
methodology for keyword spotting.

Table:2 Verification of Accuracy Regression with New Datapoints

(q,s)
Accuracy (%)

Actual Pred.
(4.0,2.5) 86.5 86.4
(4.0,3.5) 88.7 88.3
(4.0,4.5) 90.3 90.1
(8.0,2.5) 88.7 88.5
(8.0,3.0) 89.6 89.4
(8.0,3.5) 90.2 90

Figure:3 The high-level overview of the proposed accelerator design. The feature map memory forwards input
data to the PE array while the weight memory alternates layer weights for computations inside the PE array. The
output from the MAC operation is temporarily stored in the output memory. Along with this, the maxpooling block
performs maxpooling function of the data with the help of a comparator where it bubble sorts the data to achieve
proper feature map size. Top control logic regulates the state machine and pipelines the order of execution for
convolution, maxpooling, and fully connected layers for precise hardware operation.

Figure:4 Energy modeling setup based on experimental analysis for Google speech commands. (A) represents
the energy consumption experienced from implementing different configurations, (B) illustrates the surface plot
indicating the fit for the energy equation, and (C) demonstrates a better visualization of the relationship between
accuracy, energy, and precision through contours.

Table:3 Verification of Energy Regression with New Datapoints

(q,s) (P,M)
Energy (mJ)

Actual Pred.
(4.0,2.5) (40,8) 0.21 0.23
(4.0,3.5) (56,8) 0.39 0.41
(4.0,4.5) (72,8) 0.58 0.60
(8.0,2.5) (40,8) 0.41 0.42
(8.0,3.0) (48,8) 0.56 0.59
(8.0,3.5) (56,8) 0.74 0.76

Table:4 Implementation Results of Different Workloads on the 
Artix-7 200t FPGA at 100 MHz

(q,s) (P,M) BRAM Pwr (W) GOPJ Latency (ms)
(4.0,1.0) (16,8) 18 0.28 40.1 0.31
(4.0,2.0) (32,8) 51 0.38 79.6 0.42
(4.0,4.0) (64,8) 165 0.76 98.9 0.65
(4.0,4.5) (72,8) 185 0.83 104.9 0.7
(8.0,1.0) (16,8) 27 0.45 24.9 0.31
(8.0,2.0) (32,8) 85 0.68 44.5 0.42
(8.0,4.0) (64,8) 296 1.47 51.1 0.65

Table:5 Comparison of our NN (q=4,s=4.5) implementation on the 
XC7A200T platform to recent KWS hardware implementations.

Related Work [4] [5] This Work
Model SCNN CNN CNN and FC

Dataset Speech 
Commands

Speech 
Commands

Speech 
Commands

Precision 8-bits 8-bits 4-bits
Accuracy (%) 88.1 87.6 90.1

Device XC7A200T Cortex-M7 
Microcontroller XC7A200T

Model Size (KB) 150 497 340
Power (W) 1.04 - 0.47 0.83

Clock (MHz) 47.6 216 47.6 100
Latency (ms) 1.43 12 1.47 0.7
Energy (mJ) 1.49 - 0.7 0.58

GOPJ 10.5 - 41.5 104.9

o We reduce the memory requirements by choosing a 4-bit
implementation which also allows our design to have an energy and
energy efficiency advantage of around 2.1x and 4x respectively
compared to [4].


