
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

TinyM2Net: A Flexible System Algorithm Co-designed Multimodal 
Learning Framework for Tiny Devices

Hasib-Al Rashid1, Pretom Roy Ovi1, Carl Busart2, Aryya Gangopadhyay1 and Tinoosh Mohsenin1

1. University of Maryland, Baltimore County
2. U.S. Army Research Laboratory

Why TinyM2Net?

Network Architecture Optimization with DS-CNN

Contribution Towards tinyML Implementation

TinyM2Net Framework TinyM2Net Running on Tiny DeviceMotivation

References

Case Study 1: Covid Detection from Multimodal Audio Recordings

Summary

 To integrate AI in our day-to-day life, it is being implemented on
resource constrained mobile and edge platforms.

 With the exponential growth of resource constrained micro-controller
(MCU) and micro-processor (MPU) powered devices, a new
generation of neural networks has emerged, one that is smaller in
size and more concerned with model efficiency than model accuracy.

 These low-cost, low-energy MCUs and MPUs open up a whole new
world of tiny machine learning (tinyML) possibilities.

 We can directly do data analytics near the sensor by running deep
learning models on very tiny devices, greatly expanding the field of AI
applications.

 To mimic human-like behavior, tinyML algorithms should integrate
multimodal data as well.

 Multimodal learning combines disparate, heterogeneous data from a
variety of sensors and data sources into a single model.

 In contrast to standard unimodal learning systems, multimodal
systems can convey complimentary information about one another,
which becomes apparent only when both are integrated into the
learning process.

 Thus, learning-based systems that incorporate data from many
modalities can generate more robust inference or even novel insights,
which would be unachievable in a unimodal system.

 However, increased model parameters and computations limit
multimodal learning to be adopted for resource constrained edge and
tiny ML applications.

 In this research, we address this challenge and implement multimodal
learning on tiny resource constrained hardware.

 TinyM2Net is a novel flexible system-algorithm co-designed
multimodal learning framework for resource constrained devices.

 TinyM2Net that can take multimodal inputs (images and audios)
and be re-configured for application specific requirements.

 TinyM2Net allows the system and algorithms to quickly integrate
new sensors data that are customized to various types of
scenarios.

 Performed network architecture optimization with depthwise
separable CNN (DS-CNN) which reduces both the memory
requirements and required computations.

 Performed model compression with mixed-precision quantization
with the purpose of decreasing memory size for resource
constrained hardware implementation while maintaining accuracy.

 Evaluated proposed TinyM2Net for two different case-studies.
 Case-study 1 includes Covid-19 detection from multimodal

cough and speech audio recordings.
 Case-study 2 includes battlefield object detection using

multimodal images and audios.
 Implement TinyM2Net on commodity microprocessor unit, Raspberry

Pi 4. We measured inference time while it was in use, as well as
providing the appropriate power profiling to ensure that our system
is adaptable. To be called a real-time implementable tinyML system,
TinyM2Net meets all the requirements.

 The inference stage must be implemented on resource constrained
tiny devices in order to make the TinyM2Net system real-time.

 We implemented TinyM2Net on Raspberry Pi 4 which has quad-
core Cortex-A72 (ARM v8) and 2GB LPDDR4 memory.

 Performance evaluation of the TinyM2Net on resource constrained
Raspberry Pi 4 was based on two metrics: inference time and
power consumption during inference.

 Data loading, model loading, and visual display of the final result all
contribute to this inference time's length.

 The inference time was measured with the help of Raspbian OS's
`time' function. We used a batch size of 1, which is the time it takes
to process a single data point, to calculate the inference time.

 To implement into tiny hardware, extensive model compression was
done in terms of networks architecture optimization and MP
quantization (mixed 8-bit and 4-bit).

 The compressed TinyM2Net achieves 88.4% accuracy in COVID-19
detection and 96.8% accuracy in battlefield object detection.

 We tested our TinyM2Net model on a Raspberry Pi 4 to see how
they perform when deployed to a resource constrained tiny device.

[1] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization. In
International Conference on Machine Learning, pages 11875–11886. PMLR, 2021
[2] Björn W Schuller, Anton Batliner, Christian Bergler, Cecilia Mascolo, Jing Han, Iulia Lefter, Heysem
Kaya, Shahin Amiriparian, Alice Baird, Lukas Stappen, et al. The interspeech 2021 computational
paralinguistics challenge: Covid-19 cough,
covid-19 speech, escalation & primates. arXiv preprint arXiv:2102.13468, 2021.
[3] Shawn Adams. Best helicopter sounds. top sounds that helicopters make, url: 
https://www.youtube.com/watch?v=e8backzbqzc.
[4] Sintonizar Productions. Real explosion sound effects asmr, url: 
https://www.youtube.com/watch?v=lhyhy5uioji&t=64s.
[5] Car News TV. The best tanks of world war ii start sound and ride,
url:https://www.youtube.com/watch?v=kpvg5r7niso.
[6] PC Gaming Videos. Battlefield 5 gun sounds of all weapons, url:
https://www.youtube.com/watch?v=tmwagle6pr8.

Figure: High-level Overview of Case-study 2

Figure : Implementation of the TinyM2Net framework to resource constrained 
Raspberry Pi 4 device

 We pre-calculate the sensitivity of each layer independently.
 Hessian based perturbation, presented in [1] is used as sensitivity

metric.
 Minimizing this sensitivity, Integer Linear Programming is used to find

the right bit precision settings, solving following equations.

Layers Description

Input Layer Cough Audio MFCC Vector

Input Layer Speech Audio MFCC Vector

Conv2D Kernels = 16 × (3 × 3) – BN – ReLU

Conv2D Kernels = 64 × (3 × 3) – BN – ReLU

SeparableConv2D Kernels = 32 × (3 × 3) – ReLU

SeparableConv2D Kernels = 32 × (3 × 3) – ReLU

MaxPooling2D Size = (3 × 3) – 20% Dropout

MaxPooling2D Size = (2 × 2) – 20% Dropout

SeparableConv2D Kernels = 32 × (3 × 3) – ReLU

SeparableConv2D Kernels = 16 × (3 × 3) – ReLU

MaxPooling2D Size = (3 × 3) – 20% Dropout

MaxPooling2D Size = (2 × 2) – 20% Dropout

Flatten 21 × 1 × 32

Flatten 81 × 1 × 16

Dense Neurons = 32 – ReLU – 20% Dropout

Dense Neurons = 32 – ReLU – 20% Dropout

Concatenation 32 + 32

Dense Neurons = 256 – ReLU – 20% Dropout

Dense Neurons = 128 – ReLU – 20% Dropout

Dense Neurons = 2 – SoftMax

Layers Description

Input Layer Audio MFCC Vector

Input Layer Image Vector

Conv2D Kernels = 64 × (3 × 3) – BN – ReLU

Conv2D Kernels = 64 × (3 × 3) – BN – ReLU

SeparableConv2D Kernels = 32 × (3 × 3) – ReLU

SeparableConv2D Kernels = 32 × (3 × 3) – ReLU

MaxPooling2D Size = (2 × 2) – 20% Dropout

MaxPooling2D Size = (2 × 2) – 20% Dropout

SeparableConv2D Kernels = 64 × (3 × 3) – ReLU

SeparableConv2D Kernels = 64 × (3 × 3) – ReLU

MaxPooling2D Size = (2 × 2) – 20% Dropout

MaxPooling2D Size = (2 × 2) – 20% Dropout

Flatten 11 × 3 × 64

Flatten 8 × 8 × 64

Dense Neurons = 64 – ReLU – 20% Dropout

Dense Neurons = 64 – ReLU – 20% Dropout

Concatenation 64 + 64

Dense Neurons = 64 – ReLU – 20% Dropout

Dense Neurons = 4 – SoftMax

Case Study Quantization Accuracy (%) Model Size (KB)
1 Floating Point 90.4 845
1 W 8 A 8 (uniform 8) 89.6 216
1 W 4/8 A 4/8 (MP) 88.4 145
1 W 4 A 4 (uniform 4) 83.6 107
2 Floating Point 98.5 1605
2 W 8 A 8 (uniform 8) 97.9 407
2 W 4/8 A 4/8 (MP) 96.8 269
2 W 4 A 4 (uniform 4) 91.3 205

Case Study 2: Battlefield Object Detection from Multimodal Images and Audios

Experimental Results

Table: Detailed network architecture for Case-Study 2

Figure: The proposed TinyM2Net framework for multimodal learning on tiny hardware. TinyM2Net is
flexible in terms of number of input, number of layers and hyper-parameters based on application
specific requirement. New data modality suited for various settings can be readily included into the
device. Some of the input information can be images, other input data can be auditory.

Table: Detailed network architecture for Case-Study 1

Figure: Detailed Operations inside traditional CNN and DS-CNN

Model Compression with Mixed-Precision Quantization

Figure: High-level Overview of Case-study 1

Figure: Finding Mixed Precision Bit Setting Using Integer Linear Programming (ILP)

 We used the dataset from the Inter Speech 2021 ComParE challenge
[2].

 In this dataset there are 929 cough audios from 397 participants and
893 speech recordings from 366 participants.

 Each recording included a COVID-19 test result that was self-reported
by the participant.

 To build the two-class classification task, the original COVID-19 test
results were mapped to positive (designated as ‘P’) or negative
(designated as ‘N’) categories.

 As open-sourced dataset for research on battlefield environment is very
limited, we have created our own dataset for this case-study.

 We have created a dataset for multiclass classification problem with 4
classes as Helicopter, Bomb, Gun, and Tank.

 We have selected 4 publicly available YouTube videos [3-6] from where
we extracted the images and corresponding audios of Helicopter,
Bomb, Gun, and Tank.

Table: Summary of the TinyM2Net Framework Evaluation Results

 We trained our model with categorical cross-entropy loss and Adam
optimizer.

Case Study Inference Time (s) Power (mW)
1 1.2 798
2 1.7 959

Table: Implementation of the TinyM2Net framework to resource constrained 
Raspberry Pi 4 device

Acknowledgement

We acknowledge the support of the U.S. Army Grant No. W911NF21-20076.


	Slide Number 1

