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IoT Security with RF Fingerprints (RFF)

The growth of the Internet of Things (IoT) brings more
cyberattacks due to the large number of entry points in the
network. Radio Frequency Fingerprinting utilizes features in the
signals and waveforms from transmitters’ unique physical-layer
imperfections and manufacture variations to classify and
authenticate devices.

Dataset Collection

The baseband BLE packets are directly transmitted and received
using AD9082-FMCA-EBZ. The captured I/Q samples are
decimated and stored with a sampling rate of 25 MSPS to lower
the required storage space. A USB-6001 NI DAQ was used to
generate the control signals to switch the PA between
configurations.
Over 1200 packets for each of the 220 PA configuration were
collected at a baseline SNR of 35 dB. An attenuator in the
measurement setup was used to lower signal power and 500
packets per configuration at SNRs of 25 dB and 15 dB were
collected.

Figure 4. The equipment setup used to collect the RFF dataset. I/Q samples are
transmitted using ADI AD9082 and the PA is controlled with NI DAQ USB-6001. The
power spectrum of the PA output while transmitting the BLE packets was measured
across PA configurations with a spectrum analyzer.

RFF Visualization

The full distribution of recorded RF fingerprints across PA
configurations can be visualized through the usage of t-
Stochastic Neighbor Embedding (t-SNE) to project the high
dimensional recorded data to two dimensions for plotting Figure
6.

Example Use Case of CNN For PA-Config Classification 
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In this work, we presented a dataset of RF signals recorded from
a combinatorial power amplifier featuring augmented RF
fingerprints. The scheme of a single device with multi-RFFs is
beneficial for IoT security with RF fingerprinting through multiple
configurations. The dataset includes over 1200 BLE packets for
each PA configuration across all 220 PA configurations at a
baseline SNR of 35 dB. Moreover, over 500 packets per
configuration at SNRs of 25 dB and 15 dB were also collected.
We also evaluated how a lightweight CNN model achieves
different performances on this dataset with various system-level
considerations including receiver cost and noise analysis, which
empowers the possibility of adding another layer of protection to
the wireless edge devices for secure IoT communication.

We are from Energy-Efficient Circuits and Systems (EECS) Lab
(PI: Prof. Vanessa Chen) at Carnegie Mellon University.
Our research is focused on low-power cognitive interfaces for
world-to-information computing. Our work spans the design of
high-performance data converters, bio-inspired computing,
ubiquitous sensory interfaces, as well as hardware-based
cybersecurity.

Figure 1: Wireless device authentication using physical layer RFFs.

Although RFF has shown effectiveness of adding another layer of
protection to the secure wireless communications, impersonators
with adversarial attacks can fake the RFFs and fool this physical-
layer authentication.
Power amplifier (PA) nonlinearity is one of the major factors that
contribute to the RFFs on radio devices. To prevent attacks from
the impersonators, combinatorial randomness (Figure. 2) [1] is
exploited to augment the timestamped RFFs with a high-
efficiency PA for IoT applications. By enabling different subsets of
thinly sliced PA elements, the transmitter can be reconfigured
with 220 subsets that exhibit distinctive RFFs to achieve a
single-device multi-RFFs scheme. The time-stamped RFFs can
effectively prevent attacks from impersonators.

Figure 2: Combinatorial-randomness-based PA for single-device multi-RFFs.

Figure 3: Die photograph of the combinatorial-randomness-based PA.
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under Grant No. 1952907, 1953801, and 2028893.Figure 6. t-SNE was used to visualize the distribution of RFFs  within the presented dataset for (a) the baseline 

SNR of 35 dB and (b) a moderate SNR of 15 dB.

The distinct RF fingerprints produced by separate PA
configurations may be visualized through the calculation of RF
distinct native attribute (RF-DNA) fingerprints using the discrete
Gabor Transform (DGT). Kurtosis (Kurt) and skewness (Skw) of
taken from the DGT output are computed and shown in Figure 5.

Figure 5. The average RF-DNA footprint for 3 PA configurations for (a) SNR = 35 dB and (b) SNR = 15 dB.

Multiple RFFs on a Single Device

Figure 7:  The CNN model’s 220-configuration RFF classification accuracy 
with different receiver sampling rates and bit resolutions

CNN on Hardware

To verify the overhead of deploying RFF to a real system, the
CNN model is tested on a Raspberry Pi 3B+. The trained models
were also processed with post-training-quantization with
TensorFlow Lite to compress the model and speed up the
inference. An FPGA implementation is available in [1].

Table 2: CNN Performance on Raspberry 3B+

Model Type Accuracy Model Size Inference Latency Dynamic Power

FP16 98.53% 267KB 1.32ms 0.21W

INT8 95.09% 138KB 0.38ms 0.21W

Table 1: Example CNN 
Architecture

Layer Output 
Dimensions

Input 2 × input size 
(in)

Conv, 16 Ch 
1×5, stride = 2 16 × in/2

Conv, 16 Ch 
1×5, stride = 2 16 × in/4

Linear 128

Linear 220

With this dataset, an example convolutional neural network
model is made to classify up to 220 PA configurations from their
transmitted packets’ raw I/Q data. The recorded packets are
truncated to the first 40 bits of I/Q samples to isolate the fixed
BLE preambles and access addresses for classification.
To estimate the receiver side’s system-level hardware
requirement for deploying RFF authentication, different ADC
sampling rates and bit resolutions are simulated by:
- Decimating the raw data sampling rates into 1, 2, 5, 10, 15

MSPS.
- Quantizing raw data with 6, 8, 10, 12, 14, 16 bits.
The CNN is tested with each combination. The classification
results are shown in Figure. 7.
The SPS=5 and bit resolution=10 model, which achieves 98.53%
accuracy with 220 classes (PA-configs) is selected to carry on
further analysis for its moderate hardware requirements.

Figure 8:The distribution of 220-configuration 
classification accuracies.

Figure 10: Classification Acc vs. Training Data size. N is
the number of packets the tested training set had for
each PA configuration.

(a) (b)

(a) (b) Figure 11: Classification Acc vs. SNR. The figure shows
both cases for choosing 128 and 220 configurations. The
tested model was trained by data with SNRs of all 15,
25, and 35dB.

Figure 9:The distribution of 220-configuration classification 
accuracies.

It is expected that some configurations in the PA would exhibit
similar RFFs, thus affecting the classifier’s ability to distinguish
between these configurations (Figure 8).
Examining the confusion matrix and excluding less-distinct
configuration could improve the overall classification accuracy
(Figure 9).

The classifier maintains a good accuracy even when the training
data is scarce (Figure. 10).
The ability of classifying PA configurations is remained when
communication environment is worse (low-SNR), if noisy data is
included in the training dataset (Figure. 11).


