
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

TinyMLOps: Overview, Challenges and Implementation
Avyay Sah¹,², Soham Chatterjee², Archana Vaidheeswaran²

Purdue University¹,²

ScaleDown Team, Singapore²

About this template

Poster Basics – Poster Layout

Template color schemes

Importing Photographs

Importing Tables & Graphs

Labeling your headers

Your Header Text Goes Here

Your Header Text Goes Here

Your Header Text Goes Here

Your text goes here.

TINYMLOPS ARCHITECTURE

TRAIN OPTIMIZE MODEL

BENCHMARK

SECURITY

AND

ROBUSTNESS

MONITOR

AND

UPDATE

DEPLOY

DIFFERENCES

MLOPS TINYMLOPS

● Models are trained and deployed

on powerful devices

● Large models with multiple

supported architectures and Ops

● Accuracy and availability are

important

● Containerization, CI/CD, logging

and monitoring is required

● Performance checks and model

updates are done regularly

● Robustness and Autoscaling to

traffic

● Data a

Model Optimization

● Models are deployed on resource

constrained edge devices

● Small models with few supported

hardwares and Ops

● Latency, throughput, power

consumption are important

● No containers; logging and

monitoring is difficult to do

● Performance checks and model

updates are difficult to do

● Scaling is difficult after deployment;

Robustness is important

Model Training

● Does the model use unsupported operations

● Can the model architecture be efficiently executed on the target

hardware

● Is the model framework supported on the target hardware

● Can we train the model to reduce accuracy drop when optimizing

SCALEDOWN: AN OPEN SOURCE FRAMEWORK FOR TINYMLOPS

BENCHMARKING

Model Deployment Monitor and Update

TinyMLOps are a set of best practices that can help you build and deploy

machine learning applications on TinyML devices successfully.

On Host

On Device

● Architectures and Ops

○ MobileNet and EfficientNet

○ Use simple Ops and layers: Separable Convolutions,

Stride, Pooling

○ Do NOT use complex data flows

● Training Frameworks

○ Support for optimization

○ Support for Architectures and Ops

○ TensorFlow, PyTorch

● Algorithms

○ Quantization Aware Training

○ Neural Architecture Search for TinyML

○ Knowledge Distillation

Challenges

Techniques

Tools

and

ScaleDown

kd=KnowledgeDistillation(teacher, student, optimizer, distillation_loss, student_loss)

loss=kd.train_step(data)

Challenges Before deploying models, they need to be optimized to get the best performance from

the target hardware.

● Optimization mainly reduces model size and operations

● Models can also be optimized for energy consumption, peak RAM usage, latency,

throughput etc.

● Optimization can reduce accuracy and increase bias

● Optimization may not increase performance

○ Pruned models are not supported on many systems

○ INT8 operations are not fast on many systems

● Fragmented ecosystem with tools

supporting limited hardware devices or

optimization techniques causing

interoperability issues

Tools and

Techniques

● Optimizing while keeping end hardware in mind

● Algorithms

○ Quantization

○ Pruning

○ Weight Sharing and Hashing

● Tools

○ TFLite

○ Edge Impulse

○ OpenVINO

○ ONNX

Challenges

Proxy Metrics can be determined from the

Perceptible Metrics are device dependent:

Latency, Throughput, Energy, Peak RAM Usage

model without deploying: Memory, FLOPs, Accuracy

Proxy Metrics do NOT correlate with runtime metrics

This can be due to architectural features of the target device are not used optimally

This results in misleading optimization or NAS

Benchmarks should be done both on-host and on-device to get real runtime metrics

You can get close approximations with services like Renode

Performance metrics should be prioritized, especially for battery systems

Benchmarking tools are giving by

● TFLite

● OpenVINO

● DL Workbench

Tools and

Techniques

Optimization Techniques Frameworks

Quantization Pytorch

Pruning Tensorflow

Knowledge Distillation OpenVino

● Deployment Architectures

○ Multi-tenancy: Concurrent, Model Placement, Fleetwise

○ Cascade

● How do we package applications for TinyML?

○ Containers are being developed by Hammer of the Gods (HOTG)

● How to reduce battery power consumption

○ Sleep mode

○ Reduce logging and transmitting data

○ Neuromorphic Sensors

● Many Cloud Platforms have tools for TinyML

We need to be able to monitor deployed devices to check for failures, damages, low battery:

○ Device to cloud, or Device to Gateway to Cloud

○ Monitor using cellular or wifi connection

○ Mesh systems when no network connectivity

● TinyML devices need updates for

○ Deploying retrained models

○ Updating firmware

○ Adding functionality

● Updating TinyML devices:

○ Federated Learning and On device training

○ Use Gateways to receive updates and manage a small fleet of TinyML Devices

○ Partial updates should be possible to reduce battery consumption

● Security from Side-Channel and Fault Injection Attacks

● Robustness

○ To sensor failure

○ Data Drift and Environmental Conditions

○ Redundancy

Q1:2022:

ScaleDown support for other

Optimization Techniques,

Support for TFLite,

OpenVINO, ONNX and

PyTorch,

Starting Hardware Library to 1

city

Q2:2022:

1st cycle of Hardware Library

Completed,

ScaleDown support for

deployment, benchmarking and

model conversion

Q4:2022:

Publish 3 research papers,

ScaleDown support for

research,

Complete 4 cycles of

Hardware Library

Q3:2022:

Publish 1 research paper,

ScaleDown support for TinyMLOps,

monitoring, security and model

updates

Grow Hardware Library to 2 cities

Complete 2 cycles of Hardware

Library

Roadmap at

ScaleDown

● ScaleDown is an open-source project that provides open training and resources as well as fosters collaboration and innovation in TinyML

● Our mission at ScaleDown is to educate students and early career professionals about TinyML and to build tools to make developing TinyML applications easier

● TinyML engineers need to learn not only about machine learning, but also electronics and embedded systems so that they can optimise and deploy models on microcontrollers.

● However, there is a wide gap in the community for learning resources and tools to help beginners and early career professionals learn about TinyML, experiment and make products to build a

portfolio to get jobs. To help people better understand this field, we do community work like hosting workshops, study groups and talks. We also create free learning resources like books and courses.

When training models for TinyML, we need to keep in mind the constraints of the target

hardware and account for losses during model optimization Proxy Metrics

vs

Perceptible Metrics

ScaleDown

model.get_report()

ScaleDown

model=scaledown.load_model(model_file,
model_type=’tf/pytorch/openvino’)

tf_model=scaledown.ConvertToTF.convert(model)

ScaleDown

model.create_deployment_package(target=’pi’)

