TinyML Ops: Overview, Challenges and Implementation

Avyay Sah¹,², Soham Chatterjee², Archana Vaidheeswaran²
Purdue University¹,²
ScaleDown Team, Singapore²

TinyML Ops are a set of best practices that can help you build and deploy machine learning applications on TinyML devices successfully.

TinyML Ops Architecture

On Host
- **Train**: Model training
- **Optimize**: Model optimization
- **Model**: Model deployment
- **Benchmark**: Model benchmarking

On Device
- **Security and Robustness**: Security and robustness measures
- **Monitor and Update**: Model monitoring and updates
- **Deploy**: Model deployment

Model Optimization

- **Tools and Techniques**
 - Optimization
 - Proxy Metrics

Challenges

- Before deploying models, they need to be optimized to get the best performance from the target hardware.
 - Optimization may not reduce model size and operations.
 - Models may also be optimized for energy consumption, peak RAM usage, latency, throughput etc.
 - Optimization can reduce accuracy and increase latency.

Model Optimization Techniques

- **Quant**: Quantization
- **Pruning**: Pruning
- **Weight Sharing and Learning**: Weight sharing and learning

Tools

- **TFLite**: TensorFlow Lite
- **OpenVINO**: OpenVINO
- **ONNX**: ONNX

Technologies

- **Architecture and Operations**: Architecture and operations for TinyML devices
- **Scalability**: Scalability of TinyML models
- **Security**: Security aspects of TinyML

Deployment Architectures

- **Simple Operations and Layers**: Separable Convolutions
- **Networks**: MobileNet and EfficientNet

Scaling

- **Difficult after deployment**: Scaling is difficult after deployment.

Proxy Metrics

- **Robustness**: Robustness is an important proxy metric.

Knowledge Distillation

- **Modeling**: Modeling of perceptor metrics.

TinyML Devices

- **Partial updates**: Partial updates should be possible to reduce battery consumption.

TinyML Devices Need Updates for

- **Software and Hardware**: Updates are difficult to do.

Challenges

- **Deployment Architectures**
 - Models are deployed on resource-constrained edge devices.
 - Small models with few supported architectures and Ops.
 - Latency, throughput, power consumption are important.
 - No containers; logging and monitoring is difficult to do.
 - Performance checks and model updates are difficult to do.
 - Scaling is difficult after deployment; Robustness is important.

TinyML Ops: Overview, Challenges and Implementation

TinyML Ops refers to best practices that can help you build and deploy machine learning applications on TinyML devices successfully.

- **Models are trained and deployed on powerful devices.**
- **Large models with multiple supported architectures and Ops.**
- **Accuracy and availability are important.**
- **Containerization, CI/CD, logging and monitoring is required.**
- **Performance checks and model updates are done regularly.**
- **Robustness and Autoscaling to traffic.**

Challenges

- **Supported architectures and Ops.**
- **Models are deployed on resource-constrained edge devices.**
- **Latency, throughput, power consumption are important.**
- **No containers; logging and monitoring is difficult to do.**
- **Performance checks and model updates are difficult to do.**
- **Scaling is difficult after deployment; Robustness is important.**

Deployment Architectures

- **Simple Operations and Layers**: Separable Convolutions
- **Networks**: MobileNet and EfficientNet

Scaling

- **Difficult after deployment**: Scaling is difficult after deployment.

Proxy Metrics

- **Robustness**: Robustness is an important proxy metric.

Knowledge Distillation

- **Modeling**: Modeling of perceptor metrics.

TinyML Devices

- **Partial updates**: Partial updates should be possible to reduce battery consumption.

TinyML Devices Need Updates for

- **Software and Hardware**: Updates are difficult to do.

Challenges

- **Deployment Architectures**
 - Models are deployed on resource-constrained edge devices.
 - Small models with few supported architectures and Ops.
 - Latency, throughput, power consumption are important.
 - No containers; logging and monitoring is difficult to do.
 - Performance checks and model updates are difficult to do.
 - Scaling is difficult after deployment; Robustness is important.

TinyML Ops: Overview, Challenges and Implementation

- **Models are trained and deployed on powerful devices.**
- **Large models with multiple supported architectures and Ops.**
- **Accuracy and availability are important.**
- **Containerization, CI/CD, logging and monitoring is required.**
- **Performance checks and model updates are done regularly.**
- **Robustness and Autoscaling to traffic.**

Challenges

- **Supported architectures and Ops.**
- **Models are deployed on resource-constrained edge devices.**
- **Latency, throughput, power consumption are important.**
- **No containers; logging and monitoring is difficult to do.**
- **Performance checks and model updates are difficult to do.**
- **Scaling is difficult after deployment; Robustness is important.**

Deployment Architectures

- **Simple Operations and Layers**: Separable Convolutions
- **Networks**: MobileNet and EfficientNet

Scaling

- **Difficult after deployment**: Scaling is difficult after deployment.

Proxy Metrics

- **Robustness**: Robustness is an important proxy metric.

Knowledge Distillation

- **Modeling**: Modeling of perceptor metrics.

TinyML Devices

- **Partial updates**: Partial updates should be possible to reduce battery consumption.

TinyML Devices Need Updates for

- **Software and Hardware**: Updates are difficult to do.

Challenges

- **Deployment Architectures**
 - Models are deployed on resource-constrained edge devices.
 - Small models with few supported architectures and Ops.
 - Latency, throughput, power consumption are important.
 - No containers; logging and monitoring is difficult to do.
 - Performance checks and model updates are difficult to do.
 - Scaling is difficult after deployment; Robustness is important.

TinyML Ops: Overview, Challenges and Implementation

- **Models are trained and deployed on powerful devices.**
- **Large models with multiple supported architectures and Ops.**
- **Accuracy and availability are important.**
- **Containerization, CI/CD, logging and monitoring is required.**
- **Performance checks and model updates are done regularly.**
- **Robustness and Autoscaling to traffic.**

Challenges

- **Supported architectures and Ops.**
- **Models are deployed on resource-constrained edge devices.**
- **Latency, throughput, power consumption are important.**
- **No containers; logging and monitoring is difficult to do.**
- **Performance checks and model updates are difficult to do.**
- **Scaling is difficult after deployment; Robustness is important.**