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Introduction

Challenges of Adopting Existing Neural Architecture Search
Neural Architecture Search Formulation

Qualitative Comparison Against Other Frameworks

Evaluation - Architectural Adaptation

Conclusion

Evaluation – Neural Inertial Navigation and Activity Detection

• Our NAS performs intelligent architectural adaptations to
exploit full hardware capabilities in order to improve error.

• Lightweight models combined with our NAS provides state-of-
the-art performance for making rich and complex inferences
from temporal sensor data for challenging applications.

Evaluation – Analytical Proxies Are Problematic

• SRAM and Flash proxies tend to overestimate HW constraints
without considering dynamic runtime SW overhead or faults.

• FLOPS is not always proportional to latency.

Example Implementation

• Example implementation for ARM Cortex-M processors to
perform neural inertial navigation, using TensorFlow Lite Micro
as runtime interpreter and Mbed RTOS.
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MANGO: Fast, Parallel and Gradient-free Bayesian Optimizer

• Our gradient-free Bayesian NAS framework supports usage of
any lightweight models for challenging applications on any low-
end IoT platform with arbitrary optimization parameters.

• Built over state-of-the-art optimizer, Mango, that is used in
production pipelines.

• Focuses on application development; extendible by application
developers without extensive domain knowledge.

• Existing frameworks for low-end IoT devices: SpArSe,
MCUNet, MicroNets, and µNAS.

• Lack of open-source tools.
• Use of coarse or inaccurate hardware metrics / proxies.
• Problematic formulation – inability to handle loss contour

discontinuities and categorical variables; assumes usage of
only CNN and MLP for toy applications.

• Long convergence time and requires expensive compute
infrastructure.

• Neural Architecture Search: Integral component of the first-
generation TinyML workflow.

• Mango: A new state-of-the-art optimizer.
• Scalability: Outperforms current parallel searches.
• Fault-Tolerance: Detects failures at the application layer.
• Supports categorical & continuous search spaces.
• Compatible with SciPy and Scikit-learn. 
• Open-source and expandable.

Visualizing Parallel Optimization in Mango

• Mango is adopted in commercial IC design at Arm.
• Mango is 45% faster over previous deployments at Arm.

Mango vs Others on 9 ML Classifier Tasks


