
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Transformers are SoA in many fields
• Computer Vision, Audio, NLP, many more

Self-attention is key layer in transformers
• Linear layers ➡ many parameters
• Non-trivial data dependencies

Deploying self-attention to MCUs is challenging
• Typically many parameters
• Quantization of Softmax
• No efficient open-source kernels

In this work, we
• Developed 8-Bit self-attention kernels
• Implemented a tiny transformer on MCU
• Demonstrate an end-to-end use case

0M

20M

40M

60M

80M

100M

120M

Cortex-M4 Cortex-M7 GAP8

C
yc
le
s

Our Work Baseline

Tiny Transformers: Enabling Transformer Execution
on Low-Power IoT Endnodes
Moritz Scherer1, Alessio Burrello2, Marcello Zanghieri2, Luca Benini1,2, and Francesco Conti2
1ETH Zurich, 2University of Bologna

Efficient Self-Attention Kernels Self-Attention Kernel Results

Conclusion
Vision Transformer

Transpositions and softmax are major bottlenecks in self-
attention
• 73 % of inference latency in SpAtten [2]
• Transpositions are impossible to parallelize on MCUs
• Softmax activation is sequence-dependent

First key idea: Fully quantize everything to 8 Bits
• Including activations & softmax
• Leverage SIMD instructions
• 8 Bit quantization doesn’t impact accuracy [3]

Second key idea: Introduce set of specialized kernels
• Merge softmax with matmul kernel, use quantized softmax

activation [3]
• Merge transpositions with linear layer kernels by transposing

data access on input matrices
• Parallelize over head dimension

Third key idea: Parallelize over appropriate dimensions
• Instruction parallelism: innermost loop ➡ Vector-products
• Thread parallelism: outermost loop ➡ Heads

-43%

-70%

-52%

16
32

64 1
38
4

11111 32 5 32 5 32 5 32 5 32 5 32 5 32
5 10

MH

LN

MH

MH

+

MH

LN

5

96

FF

96

32

FF

+

In this work we presented
• Self-attention kernels with performance on-par with convolutions
• Close-to-linear multicore scaling

• A tiny Transformer that outperforms traditional CNN/TCNs
• End-to-end results on a real-world dataset, showing
• 3.5 % increase in Accuracy
• 9.6 x decrease in Latency
• 9.6 x decrease in Energy per Inference

The authors would like to thanks ArmaSuisse for funding this research

TinyRadar Transformer

Number of Cores

References

M
ultihead

Self-Attention
Layernorm

Linear Layer

Add

Layernorm

Linear Layer

Add

G
eLU

Self-Attention Layer Performance

ViT Transformer Encoder

Modified version of CNN-TCN network [4] for gesture recognition
• Replaced dense convolutions by depthwise-separable

convolutions
• Replaced TCN-layers by ViT-style Transformer encoder
• Downsampled the input data by a factor of 2 x

[1]: Z. Dai et al., “CoAtNet: Marrying Convolution and
Attention for All Data Sizes”
[2]: H. Wang et al., “SpAtten: Efficient Sparse
Attention Architecture with Cascade Token and Head
Pruning”
[3]: Kim et al., “I-BERT: Integer-only BERT
Quantization”
[4]: M. Scherer et al., “TinyRadarNN: Combining
Spatial and Temporal Convolutional Neural Networks
for Embedded Gesture Recognition”
[5]: L. Lai et al., “CMSIS-NN: Efficient Neural
Network kernels for ARM Cortex-M CPUs”
[6]: A. Garofalo et al., “PULP-NN: Accelerating
Quantized Neural Networks on Parallel Ultra-Low-
Power RISC-V Processors”

Self-Attention Layer Performance Breakdown

Self-Attention

Baseline is CMSIS-NN [5] and PULP-NN [6]

Self-attention kernels reduce execution time
• 43 % on Cortex-M4
• 70 % on Cortex-M7
• 52 % on GAP8
Performance is comparable to convolutional kernels
• 11.29 vs. 12.86 MAC/cycle on GAP8
• 0.61 vs. 0.71 MAC/cycle on Cortex-M7

Kernels parallelize more efficiently than baseline
• 1.98 x over 2 cores
• 3.87 x over 4 cores
• 7.16 x over 8 cores

No data marshalling ➡ avoid memory bottlenecks
No memory bottlenecks ➡ better parallelization!

All speedup on single-core platforms is due to
eliminating data marshalling and optimizing matmul

Multicore performance scales further because kernels
parallelize softmax

➡ 3 x Memory increase
➡ 3.5 % Accuracy increase, 9.6 x Latency decrease

Transformers adapted for Computer Vision
• Mixed models w/ CNN + Transformer [1]
• Only encoder, no decoder
• State-of-the-art performance on ImageNet

Promising architecture for edge application

CNN Transformer Encoder

Linear Layer Linear Layer Linear Layer

Softmax

Matmul

Matmul

Linear Layer

Transpose

Concat & Transpose

Transpose Transpose

Multihead Self-Attention

Hea
ds

1.

2.

1.98 Mcycles

Linear Layers Matmul Softmax

17.7 Mc. (3.3x)

0 100M

GAP8
STM32H7 STM32L4

0.93 Mcycles (2.1x)

58.0 Mc.

103.6 Mc.

59.3 Mc. (1.8x)

0% 20% 40% 60% 80% 100%
Execution Cycles [%] Execution Cycles [#]

1.

2.

1.

2.

