Tiny Transformers: Enabling Transformer Execution on Low-Power loT Endnodes Moritz Scherer¹, Alessio Burrello², Marcello Zanghieri², Luca Benini^{1,2}, and Francesco Conti² ¹ETH Zurich, ²University of Bologna

Self-Attention

- Transformers are SoA in many fields
- Computer Vision, Audio, NLP, many more

Self-attention is key layer in transformers

- Linear layers

 many parameters
- Non-trivial data dependencies

Multihead Self-Attention

Deploying self-attention to MCUs is challenging

- Typically many parameters
- Quantization of Softmax
- No efficient open-source kernels

In this work, we

- Developed 8-Bit self-attention kernels
- Implemented a tiny transformer on MCU
- Demonstrate an end-to-end use case

Vision Transformer

Transformers adapted for Computer Vision

- Mixed models w/ CNN + Transformer [1]
- Only encoder, no decoder
- State-of-the-art performance on ImageNet

Promising architecture for edge application ViT Transformer Encoder

First key idea: Fully quantize everything to 8 Bits

- Leverage SIMD instructions
- 8 Bit quantization doesn't impact accuracy [3]

Second key idea: Introduce set of specialized kernels

Third key idea: Parallelize over appropriate dimensions

Efficient Self-Attention Kernels

Transpositions and softmax are major bottlenecks in selfattention

73 % of inference latency in SpAtten [2]

Transpositions are impossible to parallelize on MCUs Softmax activation is sequence-dependent

Including activations & softmax

Merge softmax with matmul kernel, use quantized softmax activation [3]

Merge transpositions with linear layer kernels by transposing data access on input matrices

Parallelize over head dimension

Instruction parallelism: innermost loop
Vector-products Thread parallelism: outermost loop

Heads

TinyRadar Transformer

Modified version of CNN-TCN network [4] for gesture recognition • Replaced dense convolutions by depthwise-separable convolutions

Replaced TCN-layers by ViT-style Transformer encoder • Downsampled the input data by a factor of 2 x

- → 3 x Memory increase
- → 3.5 % Accuracy increase, **9.6 x Latency decrease**

Self-Attention Kernel Results

Conclusion

In this work we presented

Self-attention kernels with performance on-par with convolutions

- Close-to-linear multicore scaling \bullet
- A tiny Transformer that outperforms traditional CNN/TCNs
- End-to-end results on a real-world dataset, showing
- 3.5 % increase in Accuracy
- 9.6 x decrease in Latency
- 9.6 x decrease in Energy per Inference

The authors would like to thanks ArmaSuisse for funding this research

	References
	 [1]: Z. Dai et al., "CoAtNet: Marrying Convolution and Attention for All Data Sizes" [2]: H. Wang et al., "SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning" [3]: Kim et al., "I-BERT: Integer-only BERT Quantization" [4]: M. Scherer et al., "TinyRadarNN: Combining Spatial and Temporal Convolutional Neural Networks for Embedded Gesture Recognition" [5]: L. Lai et al., "CMSIS-NN: Efficient Neural Network kernels for ARM Cortex-M CPUs" [6]: A. Garofalo et al., "PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low- Power RISC-V Processors"