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Transformers are SoA in many fields
• Computer Vision, Audio, NLP, many more

Self-attention is key layer in transformers
• Linear layers ➡ many parameters
• Non-trivial data dependencies

Deploying self-attention to MCUs is challenging
• Typically many parameters
• Quantization of Softmax 
• No efficient open-source kernels

In this work, we
• Developed 8-Bit self-attention kernels
• Implemented a tiny transformer on MCU
• Demonstrate an end-to-end use case
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Conclusion
Vision Transformer

Transpositions and softmax are major bottlenecks in self-
attention
• 73 % of inference latency in SpAtten [2] 
• Transpositions are impossible to parallelize on MCUs
• Softmax activation is sequence-dependent

First key idea: Fully quantize everything to 8 Bits
• Including activations & softmax
• Leverage SIMD instructions
• 8 Bit quantization doesn’t impact accuracy [3]

Second key idea: Introduce set of specialized kernels
• Merge softmax with matmul kernel, use quantized softmax 

activation [3]
• Merge transpositions with linear layer kernels by transposing 

data access on input matrices
• Parallelize over head dimension 

Third key idea: Parallelize over appropriate dimensions
• Instruction parallelism: innermost loop ➡ Vector-products
• Thread parallelism: outermost loop ➡ Heads
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In this work we presented
• Self-attention kernels with performance on-par with convolutions
• Close-to-linear multicore scaling

• A tiny Transformer that outperforms traditional CNN/TCNs
• End-to-end results on a real-world dataset, showing
• 3.5 % increase in Accuracy
• 9.6 x decrease in Latency
• 9.6 x decrease in Energy per Inference

The authors would like to thanks ArmaSuisse for funding this research
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Self-Attention Layer Performance

ViT Transformer Encoder

Modified version of CNN-TCN network [4] for gesture recognition
• Replaced dense convolutions by depthwise-separable 

convolutions
• Replaced TCN-layers by ViT-style Transformer encoder
• Downsampled the input data by a factor of 2 x

[1]: Z. Dai et al., “CoAtNet: Marrying Convolution and 
Attention for All Data Sizes”
[2]: H. Wang et al., “SpAtten: Efficient Sparse 
Attention Architecture with Cascade Token and Head 
Pruning”
[3]: Kim et al., “I-BERT: Integer-only BERT 
Quantization”
[4]: M. Scherer et al., “TinyRadarNN: Combining 
Spatial and Temporal Convolutional Neural Networks 
for Embedded Gesture Recognition”
[5]: L. Lai et al., “CMSIS-NN: Efficient Neural 
Network kernels for ARM Cortex-M CPUs”
[6]: A. Garofalo et al., “PULP-NN: Accelerating 
Quantized Neural Networks on Parallel Ultra-Low-
Power RISC-V Processors”

Self-Attention Layer Performance Breakdown

Self-Attention

Baseline is CMSIS-NN [5] and PULP-NN [6]

Self-attention kernels reduce execution time
• 43 % on Cortex-M4
• 70 % on Cortex-M7
• 52 % on GAP8
Performance is comparable to convolutional kernels
• 11.29 vs. 12.86 MAC/cycle on GAP8
• 0.61 vs. 0.71 MAC/cycle on Cortex-M7

Kernels parallelize more efficiently than baseline
• 1.98 x over 2 cores
• 3.87 x over 4 cores
• 7.16 x over 8 cores

No data marshalling ➡ avoid memory bottlenecks
No memory bottlenecks ➡ better parallelization!

All speedup on single-core platforms is due to 
eliminating data marshalling and optimizing matmul

Multicore performance scales further because kernels 
parallelize softmax 

➡ 3 x Memory increase
➡ 3.5 % Accuracy increase, 9.6 x Latency decrease 

Transformers adapted for Computer Vision
• Mixed models w/ CNN + Transformer [1]
• Only encoder, no decoder
• State-of-the-art performance on ImageNet

Promising architecture for edge application
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