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CFU Playground runs a complete System-on-Chip (SoC) on an
FPGA to capture the full-stack system effects of accelerating ML
models. LiteX provides a convenient and efficient infrastructure to 
create FPGA soft cores and SoCs. The soft core used in CFU 
Playground is VexRiscv, an implementation of a RISC-V CPU in 
SpinalHDL. The design of the VexRiscv is highly configurable, 
providing the ability to easily plugin or remove many different 
features for performance and functionality such as pipelining 
stages, caches, and floating point units. This customization ability 
lends itself well to enabling the design space exploration of CPU 
vs. CFU. 
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CFU Playground ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gemmini [5] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

hls4ml [2] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

DNNWeaver [6] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Deepburning [4] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

DNNBuilder [3] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

FINN [1] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
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Keyword Spotting

The gateware for CFU Playground is adaptable to a wide
range of FPGA hardware platforms. It can fit on a board as
small as Fomu, which is 1 cm2 and fits entirely within a
USB port, which enables rapid prototyping for tinyML.
But when more resources are available, a larger more powerful
soft CPU and CFU can be built, and with more memory, larger
models can be run. 

CFU Playground currently support the Xilinx 7-Series as
well as the Lattice iCE40, ECP5, and CrossLink FPGAs. The
Fomu with the iCE40UP5k FPGA is close to the smallest
usable board; it features 5280 logic cells, 128kB on-chip
large RAM, 30 512-byte block RAMs, and 8 16b x 16b
DSP/multiplier blocks and is small enough to slot into a USB.

Evaluation

We present CFU Playground, a full-stack open-source framework
that enables rapid and iterative design of machine learning (ML)
accelerators for tinyML systems. Our toolchain tightly integrates 
open-source software, RTL generators, and FPGA tools for 
synthesis, place, and route. This full-stack development 
framework gives engineers access to explore bespoke 
architectures that are customized and co-optimized for tinyML. 
The rapid, deploy-profile-optimization feedback loop lets ML 
hardware and software developers achieve significant returns out 
of a relatively small investment in customization. Using CFU 
Playground’s design loop, we show substantial speedups (55×-
75×) and design space exploration between the CPU and 
accelerator.

To invoke the CFU, custom instructions must be added to the 
CPU’s instruction set. However, it is not the compiler’s 
responsibility to find uses for the instructions. It only needs to 
generate them when requested by the user. Therefore, we can 
use a stock RISC-V GCC toolchain, coupled with a macro we 
provide that expands to “asm” directives to generate the encoded 
custom instructions where necessary. The macro takes 4 
arguments, and returns one result:

q = cfu_op(funct7, funct3, a, b);

The macro directly generates the encoded 32b value, so not even 
the assembler needs modification. "funct7" and "funct3" are 7-bit 
and 3-bit fields respectively that specify the opcode of the custom 
instruction. They must be compile-time constant expressions. "a" 
and "b" are the C/C++ 32b integer variables used as operands for 
the instruction, and a 32b result is returned. 

It is the user’s responsibility to call the custom operations from 
their code. The custom instruction macros can be intermixed with 
regular C code, similar to any other C/C++ operation. TensorFlow 
Lite for Microcontrollers (TFLite Micro  is the inference framework 
that CFU Playground uses for the deployment of the neural 
network. The user must provide an optimized kernel that uses the 
new custom instructions to realize the runtime performance 
improvements.

The Keyword Spotting application is ubiquitous and an always-on 
tinyML use case, making it a perfect candidate for acceleration. 
This example took under four weeks to implement. We describe 
how an author (different than in the previous example) utilized 
CFU Playground to accelerate quantized (int8) inference of the 
MLPerf Tiny KWS model that included model-specific software 
optimizations and a custom CFU, by over 75×. We deployed the 
system to the tiny Fomu FPGA board, which is roughly the size of 
a penny and fits inside a USB slot. It combines an iCE40UP5k 
FPGA (with 5280 logic cells and 128 kB of on-chip RAM) with a 2 
MB flash memory. This example demonstrates resource 
allocation optimization among the CPU, memory system, and 
CFU on a resource-constrained tinyML device.

CFU Playground enables a deploy→profile→optimize loop that
enables iterative, guided optimization of resource-constrained ML
systems. The toolchain allows a developer to quickly focus their 
design effort at any layer of the stack, measure its performance 
at a fine granularity, implement custom optimizations, and repeat. 
The figure above highlights components of CFU Playground that 
fulfill a role in the design cycle across the deployment stack: 
Software, Gateware, and Hardware. An FPGA platform is 
assumed to be the final deployment, although this process could 
also be considered to be a prototyping step for ASIC deployment.

The custom function unit (CFU) is a small piece of custom logic 
added in hardware to extend the CPU’s datapath to accelerate a 
discrete function determined by the developer. It follows the 
RISC-V R-format in which it receives two operands from the 
register file and writes one result back. A CFU can support state, 
multiple custom instructions, and pipelining. A notable feature of 
this architecture is that the CFU does not have direct memory 
access. It relies on the CPU to move data back and forth. The 
merits of a direct CFU-memory connection are being considered 
and may be added in the future. The boundary between CPU and 
CFU is strictly logical. The implementation flattens the design and 
optimizes, places, and routes it all together.

Image classification is a common task for low-power, always-on 
cameras, such as those in a smart doorbell. We present the 
experience of one of the authors, with limited prior hardware 
development experience, utilizing the CFU Playground 
deploy→profile→optimize loop, spending approximately 50% of 
their time over five weeks. They achieved a speedup of 55× for 
the most time-consuming TFLite operator in the model, bringing 
the contribution of that operator down from 5.5 seconds to 0.10 
seconds per inference. We targeted a MobileNetV2 (MNV2) 
model, which is commonly used for efficient image classification, 
and optimized its performance on an Arty A7-35T board, which 
has a Xilinx XC7A35T FPGA with 256 MB of external DDR3 
memory. The chart below shows the speedup progression as we 
stepped through each of the optimizations. We start with software 
optimizations and move on to hardware support using the CFU. 
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