
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

CFU Playground runs a complete System-on-Chip (SoC) on an
FPGA to capture the full-stack system effects of accelerating ML
models. LiteX provides a convenient and efficient infrastructure to
create FPGA soft cores and SoCs. The soft core used in CFU
Playground is VexRiscv, an implementation of a RISC-V CPU in
SpinalHDL. The design of the VexRiscv is highly configurable,
providing the ability to easily plugin or remove many different
features for performance and functionality such as pipelining
stages, caches, and floating point units. This customization ability
lends itself well to enabling the design space exploration of CPU
vs. CFU.

CFU Playground: Full-Stack Open-Source Framework for TinyML
Acceleration on FPGAs

Shvetank Prakash∗ Tim Callahan† Joseph Bushagour§ Colby Banbury∗
Alan V. Green† Pete Warden† Tim Ansell† Vijay Janapa Reddi∗

The Playground

Methodology

Gateware Software

Hardware Open
Source

Tightly Coupled/
Specialized ISA

Full-Stack Full-SoC Processor
Customization

Discrete
ML Ops

Stock
Compiler

TinyML
Focus

CFU Playground ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gemmini [5] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

hls4ml [2] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

DNNWeaver [6] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Deepburning [4] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

DNNBuilder [3] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

FINN [1] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Image Classification

[1] Y. Umuroglu, et al., “Finn: A framework for fast, scalable binarized neural network inference,” in
International Symposium on FPGA, 2017.

[2] F. Fahim, et al., “hls4ml: An open-source codesign workflow to empower scientific low-power
machine learning devices,” CoRR, 2021.

[3] X. Zhang, et al., “Dnnbuilder: an automated tool for building high-performance dnn hardware
accelerators for fpgas,” in ICCAD, 2018.

[4] Y. Wang, et al., “Deepburning: Automatic generation of fpga-based learning accelerators for the
neural network family,” in DAC, 2016.

[5] H. Genc, et al., “Gemmini: Enabling systematic deep- learning architecture evaluation via full-stack
integration,” in Proceedings of 58th DAC, 2021.

[6] H. Sharma, et al., “Dnnweaver: From high-level deep network models to fpga acceleration,” in
Workshop on Cognitive Architectures, 2016.

Keyword Spotting

The gateware for CFU Playground is adaptable to a wide
range of FPGA hardware platforms. It can fit on a board as
small as Fomu, which is 1 cm2 and fits entirely within a
USB port, which enables rapid prototyping for tinyML.
But when more resources are available, a larger more powerful
soft CPU and CFU can be built, and with more memory, larger
models can be run.

CFU Playground currently support the Xilinx 7-Series as
well as the Lattice iCE40, ECP5, and CrossLink FPGAs. The
Fomu with the iCE40UP5k FPGA is close to the smallest
usable board; it features 5280 logic cells, 128kB on-chip
large RAM, 30 512-byte block RAMs, and 8 16b x 16b
DSP/multiplier blocks and is small enough to slot into a USB.

Evaluation

We present CFU Playground, a full-stack open-source framework
that enables rapid and iterative design of machine learning (ML)
accelerators for tinyML systems. Our toolchain tightly integrates
open-source software, RTL generators, and FPGA tools for
synthesis, place, and route. This full-stack development
framework gives engineers access to explore bespoke
architectures that are customized and co-optimized for tinyML.
The rapid, deploy-profile-optimization feedback loop lets ML
hardware and software developers achieve significant returns out
of a relatively small investment in customization. Using CFU
Playground’s design loop, we show substantial speedups (55×-
75×) and design space exploration between the CPU and
accelerator.

To invoke the CFU, custom instructions must be added to the
CPU’s instruction set. However, it is not the compiler’s
responsibility to find uses for the instructions. It only needs to
generate them when requested by the user. Therefore, we can
use a stock RISC-V GCC toolchain, coupled with a macro we
provide that expands to “asm” directives to generate the encoded
custom instructions where necessary. The macro takes 4
arguments, and returns one result:

q = cfu_op(funct7, funct3, a, b);

The macro directly generates the encoded 32b value, so not even
the assembler needs modification. "funct7" and "funct3" are 7-bit
and 3-bit fields respectively that specify the opcode of the custom
instruction. They must be compile-time constant expressions. "a"
and "b" are the C/C++ 32b integer variables used as operands for
the instruction, and a 32b result is returned.

It is the user’s responsibility to call the custom operations from
their code. The custom instruction macros can be intermixed with
regular C code, similar to any other C/C++ operation. TensorFlow
Lite for Microcontrollers (TFLite Micro is the inference framework
that CFU Playground uses for the deployment of the neural
network. The user must provide an optimized kernel that uses the
new custom instructions to realize the runtime performance
improvements.

The Keyword Spotting application is ubiquitous and an always-on
tinyML use case, making it a perfect candidate for acceleration.
This example took under four weeks to implement. We describe
how an author (different than in the previous example) utilized
CFU Playground to accelerate quantized (int8) inference of the
MLPerf Tiny KWS model that included model-specific software
optimizations and a custom CFU, by over 75×. We deployed the
system to the tiny Fomu FPGA board, which is roughly the size of
a penny and fits inside a USB slot. It combines an iCE40UP5k
FPGA (with 5280 logic cells and 128 kB of on-chip RAM) with a 2
MB flash memory. This example demonstrates resource
allocation optimization among the CPU, memory system, and
CFU on a resource-constrained tinyML device.

CFU Playground enables a deploy→profile→optimize loop that
enables iterative, guided optimization of resource-constrained ML
systems. The toolchain allows a developer to quickly focus their
design effort at any layer of the stack, measure its performance
at a fine granularity, implement custom optimizations, and repeat.
The figure above highlights components of CFU Playground that
fulfill a role in the design cycle across the deployment stack:
Software, Gateware, and Hardware. An FPGA platform is
assumed to be the final deployment, although this process could
also be considered to be a prototyping step for ASIC deployment.

The custom function unit (CFU) is a small piece of custom logic
added in hardware to extend the CPU’s datapath to accelerate a
discrete function determined by the developer. It follows the
RISC-V R-format in which it receives two operands from the
register file and writes one result back. A CFU can support state,
multiple custom instructions, and pipelining. A notable feature of
this architecture is that the CFU does not have direct memory
access. It relies on the CPU to move data back and forth. The
merits of a direct CFU-memory connection are being considered
and may be added in the future. The boundary between CPU and
CFU is strictly logical. The implementation flattens the design and
optimizes, places, and routes it all together.

Image classification is a common task for low-power, always-on
cameras, such as those in a smart doorbell. We present the
experience of one of the authors, with limited prior hardware
development experience, utilizing the CFU Playground
deploy→profile→optimize loop, spending approximately 50% of
their time over five weeks. They achieved a speedup of 55× for
the most time-consuming TFLite operator in the model, bringing
the contribution of that operator down from 5.5 seconds to 0.10
seconds per inference. We targeted a MobileNetV2 (MNV2)
model, which is commonly used for efficient image classification,
and optimized its performance on an Arty A7-35T board, which
has a Xilinx XC7A35T FPGA with 256 MB of external DDR3
memory. The chart below shows the speedup progression as we
stepped through each of the optimizations. We start with software
optimizations and move on to hardware support using the CFU.

Existing Frameworks

Final MobileNetV2 Accelerator Design

†Google §Purdue University ∗Harvard University

1x1xN Conv2D Accelerator

Memory

C
PU

Output Queue

MACC units

Post processors

Input Buffer Filter Values

Input
Tensor

Output
Tenso
r

Filter
Values

Se
qu

en
ce

r

Buffer

Input Queue

1. Load filter values

2. Set up sequencer

3. Stream input values

4. Stream output values

Register File

ALU CFU
funct

CPU CFU

funct7 rs2 rs1 funct3 rd opcode

CFU

