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Deploying ML Solutions at the Edge

Research in tinyML algorithms is continuously proposing new
training algorithms for quantised neural networks (QNNs),
while hardware designers have introduced architectural support
for sub-byte and mixed-type integer arithmetic.

QuantLab aims to help developers creating the most effective
quantised neural networks (QNNs) using the best training
algorithms and allowing for mixed-precision policies, and to
facilitate their deployment on tinyML devices.

Quantisers

Float-to-Fake Conversion Fake-to-True Conversion

QuantLab: Experiment Management
Code & Contacts

Quantisation-aware training (QAT) algorithms embed the
integer ranges (true-quantised, TQ) to be used at execution time
into fake-quantised (FQ) ranges.

Quantisers map floating-point (FP) ranges to target FQ ranges.

Fake-quantised networks use FQ operands (weights and
features) to mimic quantisation at training time.

QuantLib supports the programmatic transformation of FP
networks (Figure 2a) into FQ ones:
• graph canonicalization; for instance, replacing non-modular

with modular API, or folding the bias of linear operations into
the following batch-normalisations (Figure 2b);

• point-wise replacement of PyTorch nn.Module objects
with FQ counterparts (Figure 2c);

• 𝜺-harmonization of additions and concatenations (Figure 3).

QuantLib supports several QAT algorithms using dedicated FQ
nn.Module objects:
• STE: straight-through estimator;
• ANA : additive noise annealing;
• INQ: incremental network quantisation;
• PACT: parametrised clipping activation;
• TQT: trained quantisation thresholds.

QuantLib & QuantLab

QuantLab and QuantLib are open-sourced on GitHub!
• QuantLib: https://github.com/pulp-platform/quantlib/
• QuantLab: https://github.com/pulp-platform/quantlab

e-mail: spmatteo@iis.ee.ethz.ch

They have been developed in the scope of
the parallel ultra-low-power (PULP) project.

Example Use Case: MobileNets on PULP

PRECISION: 𝑛 ∈ ℕ, 𝑛 > 1
OFFSET: 𝑧 ∈ ℤ
SCALE: 𝜀 ∈ ℝ, 𝜀 > 0

𝜎 ∶ ℝ → 𝜀 𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1
𝑥 ↦ 𝜀 ⌊𝑐𝑙𝑖𝑝( ⁄𝑥 𝜀 , 𝑧, 𝑧 + 𝑛 − 1 + ⁄𝜀 4)⌋

TQ RANGE:
{𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1}

FQ RANGE:
𝜀 𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1

Figure 2: a portion of the computational graph of an FP network
(a); of a canonicalised FP network (b); of an FQ network (c).
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Figure 4: a portion of the computational graph of an FQ network
after 𝜀-propagation (a); of a partially integerised FQ network
(b); of a fully integerised (TQ) network (c).
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Figure 1: the computational graph of a quantiser 𝜎.

To enable deployment on tinyML devices, FQ networks must be
rewritten in terms of backend-supported integer operations
while preserving functionality. The resulting programs are
true-quantised networks.

QuantLib supports an composable and extensible collection
of transformations to rewrite FQ networks graphs into TQ ones:
• 𝜺 -propagation: annotate each FQ array with the

corresponding scale factor (Figure 4a);
• arithmetic folding: use elementary arithmetic properties

(e.g., distributive, commutative) to expose TQ arrays (Figure
4b);

• requantisation: approximate the remaining FP operations
using the requantisation property (Figure 4c)

lim
!→#$

⁄⌊2!𝑥⌋ 2! = 𝑥 .

The output of the fake-to-true conversion process is an ONNX
file, annotated with the precision of each operand.

𝜺-Harmonisation
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Consider two FQ arrays:
@𝒙! = 𝜀!C𝒙!, @𝒙"= 𝜀"C𝒙" .

Under which conditions can we 
write their sum as an FQ array

@𝒙!+ @𝒙"= 𝜀#C𝒙#?

𝜺𝑨 = 𝜺𝑩

Figure 3: detail of the 𝜀-harmonised computational graph of a
ResNet-like network (merging of the residual into the identity).

Users describe mixed-precision
QNNs via JSON configuration
files (what vs. how).
Users can define and execute
factorial experimental designs
simply by scripting how to patch
configuration files.
QuantLab supports automatic
cross-validation.

QuantLab is based on PyTorch, and consists of two components:
• QuantLib, the quantisation library;
• QuantLab, the experiment management front-end.

QuantLib:
• supports sub-byte and mixed-precision quantisers;
• supports several quantisation algorithms;
• can be used as a plug-in for PyTorch projects.

QuantLab:
• enables easy comparisons between different data sets and

network architectures;
• minimises the duplication of ML system components;
• facilitates the generation of statistically solid results.

8-bit Mixed Relative
Accuracy (PACT) 69.2% 65.9% -4.8%
Accuracy (TQT) 69.4% 67.0% -3.5%
Latency [ms] 705.50 557.10 -21.0%
Energy (total) [mJ] 38.17 30.11 -21.1%
Energy (math) [mJ] 35.98 29.41 -18.3%
Energy (L3) [mJ] 2.19 0.70 -68.0%
L3 accesses (𝒘 ̂) [#] 2568161 2266880 -11.7%
L3 accesses (𝒙 ̂) [#] 4515840 0 -100.0%

PACT TQT
Accuracy (FQ) 71.4% 71.4%
Accuracy (TQ) 71.3% 71.4%

Two experiments:
• compare different QAT algorithms in conjunction with

homogeneous quantisation policy, and verify correctness of
the fake-to-true conversion (Table 1);

• compare homogeneous to mixed-precision policies to fit a
tinyML device (Table 2).

Table 1: accuracy of an 8-bit MobileNetV2 network, trained with
two different QAT algorithms; note that in both cases, fake-to-
true conversion is almost lossless (some small errors might be
introduced by arithmetic folding and requantisation due to the
imperfect correspondence between FP and integer arithmetic).

Table 2: performance of a obileNetV1 network, trained using
two different QAT algorithms and two different quantisation
policies. Measurements were taken using the GVSoC simulator,
emulating a PULP system integrating the sub-word XpulpNN
arithmetic extensions; code was generated using the DORY
tool. Note that the mixed-precision policy (Table 3) removes the
need of accessing writing to and readimg features from off-chip
RAM (L3 memory).

φ_1 φ_2 φ_3 φ_4 φ_5 φ_6 φ_7 φ_8 … φ_26φ_27
𝒘 ̂ 8 4 4 4 8 4 4 4 … 8 4
𝒙 ̂ 4 4 2 8 4 4 4 8 … 2 8

Table 3: the MobileNetV1 mixed-precision quantisation policy
that avoids accessing off-chip RAM. The layers that are not
reported use 8-bit weights and features.

https://github.com/pulp-platform/quantlib/
https://github.com/pulp-platform/quantlab

