
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

QuantLab: a Modular Framework for Training and Deploying Mixed-Precision NNs
Matteo Spallanzani1, Georg Rutishauser1, Moritz Scherer1, Alessio Burrello2, Francesco Conti2 and Luca Benini1,2

1ETH Zürich (Switzerland), 2Università di Bologna (Italy)

Deploying ML Solutions at the Edge

Research in tinyML algorithms is continuously proposing new
training algorithms for quantised neural networks (QNNs),
while hardware designers have introduced architectural support
for sub-byte and mixed-type integer arithmetic.

QuantLab aims to help developers creating the most effective
quantised neural networks (QNNs) using the best training
algorithms and allowing for mixed-precision policies, and to
facilitate their deployment on tinyML devices.

Quantisers

Float-to-Fake Conversion Fake-to-True Conversion

QuantLab: Experiment Management
Code & Contacts

Quantisation-aware training (QAT) algorithms embed the
integer ranges (true-quantised, TQ) to be used at execution time
into fake-quantised (FQ) ranges.

Quantisers map floating-point (FP) ranges to target FQ ranges.

Fake-quantised networks use FQ operands (weights and
features) to mimic quantisation at training time.

QuantLib supports the programmatic transformation of FP
networks (Figure 2a) into FQ ones:
• graph canonicalization; for instance, replacing non-modular

with modular API, or folding the bias of linear operations into
the following batch-normalisations (Figure 2b);

• point-wise replacement of PyTorch nn.Module objects
with FQ counterparts (Figure 2c);

• 𝜺-harmonization of additions and concatenations (Figure 3).

QuantLib supports several QAT algorithms using dedicated FQ
nn.Module objects:
• STE: straight-through estimator;
• ANA : additive noise annealing;
• INQ: incremental network quantisation;
• PACT: parametrised clipping activation;
• TQT: trained quantisation thresholds.

QuantLib & QuantLab

QuantLab and QuantLib are open-sourced on GitHub!
• QuantLib: https://github.com/pulp-platform/quantlib/
• QuantLab: https://github.com/pulp-platform/quantlab

e-mail: spmatteo@iis.ee.ethz.ch

They have been developed in the scope of
the parallel ultra-low-power (PULP) project.

Example Use Case: MobileNets on PULP

PRECISION: 𝑛 ∈ ℕ, 𝑛 > 1
OFFSET: 𝑧 ∈ ℤ
SCALE: 𝜀 ∈ ℝ, 𝜀 > 0

𝜎 ∶ ℝ → 𝜀 𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1
𝑥 ↦ 𝜀 ⌊𝑐𝑙𝑖𝑝(⁄𝑥 𝜀 , 𝑧, 𝑧 + 𝑛 − 1 + ⁄𝜀 4)⌋

TQ RANGE:
{𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1}

FQ RANGE:
𝜀 𝑧, 𝑧 + 1,… , 𝑧 + 𝑛 − 1

Figure 2: a portion of the computational graph of an FP network
(a); of a canonicalised FP network (b); of an FQ network (c).

n
n
.
C
o
n
v
2
d

n
n
.
B
a
t
c
h
N
o
r
m
2
d

n
n
.
R
e
L
U

n
n
.
S
e
q
u
e
n
t
i
a
l

x!−1

x!

w!

b!

γ′!

β′!

∗

∗

+

+

ReLU

n
n
.
C
o
n
v
2
d

n
n
.
B
a
t
c
h
N
o
r
m
2
d

n
n
.
R
e
L
U

n
n
.
S
e
q
u
e
n
t
i
a
l

x!−1

x!

w!

γ′!

β′!

∗

∗

+

ReLU

x̃!−1

x̃!

w̃!

γ′!

β′!

∗

∗

+

εw!

εx! σ

σw!

q
l
.
Q
C
o
n
v
2
d

n
n
.
B
a
t
c
h
N
o
r
m
2
d

q
l
.
Q
R
e
L
U

n
n
.
S
e
q
u
e
n
t
i
a
l

(c)(b)(a)

x̃!−1

x̂!

x̂!−1

∗

∗

∗γ′!

β′! +

εx!

εx!−1

q
l
.
Q
C
o
n
v
2
d

q
l
.
Q
R
e
L
U

n
n
.
B
a
t
c
h
N
o
r
m
2
d

w̃!

εw!

ŵ!

q
l
.
Q
R
e
L
U

ε = N/A

ε = εx!

ε = εx!−1εw!

ε = εx!−1

x̂!

x̂!−1

∗γ′′!

β′′! +

∗ŵ!

2D /

β′′! = 2D β′!

ε
x!

γ′′! = 2D
γ′!ε

x!−1εw!

ε
x!

x̂!

x̂!−1

∗γ̂!

β̂! +

∗ŵ!

D

γ̂! = #γ′′!%

β̂! = #β′′!%

>>

clip

t
o
r
c
h
.
c
l
i
p

q
l
.
R
e
q
u
a
n
t
S
h
i
f
t

q
l
.
Q
C
o
n
v
2
d

(c)(b)(a)

Figure 4: a portion of the computational graph of an FQ network
after 𝜀-propagation (a); of a partially integerised FQ network
(b); of a fully integerised (TQ) network (c).

x / ∗"·#clip

ε

z n

x̂ x̃

TRUE-QUANTISED

FAKE-QUANTISED

DATA TYPE PARAMETERS

FLOATING-POINT

Figure 1: the computational graph of a quantiser 𝜎.

To enable deployment on tinyML devices, FQ networks must be
rewritten in terms of backend-supported integer operations
while preserving functionality. The resulting programs are
true-quantised networks.

QuantLib supports an composable and extensible collection
of transformations to rewrite FQ networks graphs into TQ ones:
• 𝜺 -propagation: annotate each FQ array with the

corresponding scale factor (Figure 4a);
• arithmetic folding: use elementary arithmetic properties

(e.g., distributive, commutative) to expose TQ arrays (Figure
4b);

• requantisation: approximate the remaining FP operations
using the requantisation property (Figure 4c)

lim
!→#$

⁄⌊2!𝑥⌋ 2! = 𝑥 .

The output of the fake-to-true conversion process is an ONNX
file, annotated with the precision of each operand.

𝜺-Harmonisation

x̃B

+

σ

x̃′
B

εx′B

x̃A

σ

x̃′
A

εx′A

==

q
l
.
H
a
r
m
o
n
i
s
e
d
A
d
d

εx′

Consider two FQ arrays:
@𝒙! = 𝜀!C𝒙!, @𝒙"= 𝜀"C𝒙" .

Under which conditions can we
write their sum as an FQ array

@𝒙!+ @𝒙"= 𝜀#C𝒙#?

𝜺𝑨 = 𝜺𝑩

Figure 3: detail of the 𝜀-harmonised computational graph of a
ResNet-like network (merging of the residual into the identity).

Users describe mixed-precision
QNNs via JSON configuration
files (what vs. how).
Users can define and execute
factorial experimental designs
simply by scripting how to patch
configuration files.
QuantLab supports automatic
cross-validation.

QuantLab is based on PyTorch, and consists of two components:
• QuantLib, the quantisation library;
• QuantLab, the experiment management front-end.

QuantLib:
• supports sub-byte and mixed-precision quantisers;
• supports several quantisation algorithms;
• can be used as a plug-in for PyTorch projects.

QuantLab:
• enables easy comparisons between different data sets and

network architectures;
• minimises the duplication of ML system components;
• facilitates the generation of statistically solid results.

8-bit Mixed Relative
Accuracy (PACT) 69.2% 65.9% -4.8%
Accuracy (TQT) 69.4% 67.0% -3.5%
Latency [ms] 705.50 557.10 -21.0%
Energy (total) [mJ] 38.17 30.11 -21.1%
Energy (math) [mJ] 35.98 29.41 -18.3%
Energy (L3) [mJ] 2.19 0.70 -68.0%
L3 accesses (𝒘 ̂) [#] 2568161 2266880 -11.7%
L3 accesses (𝒙 ̂) [#] 4515840 0 -100.0%

PACT TQT
Accuracy (FQ) 71.4% 71.4%
Accuracy (TQ) 71.3% 71.4%

Two experiments:
• compare different QAT algorithms in conjunction with

homogeneous quantisation policy, and verify correctness of
the fake-to-true conversion (Table 1);

• compare homogeneous to mixed-precision policies to fit a
tinyML device (Table 2).

Table 1: accuracy of an 8-bit MobileNetV2 network, trained with
two different QAT algorithms; note that in both cases, fake-to-
true conversion is almost lossless (some small errors might be
introduced by arithmetic folding and requantisation due to the
imperfect correspondence between FP and integer arithmetic).

Table 2: performance of a obileNetV1 network, trained using
two different QAT algorithms and two different quantisation
policies. Measurements were taken using the GVSoC simulator,
emulating a PULP system integrating the sub-word XpulpNN
arithmetic extensions; code was generated using the DORY
tool. Note that the mixed-precision policy (Table 3) removes the
need of accessing writing to and readimg features from off-chip
RAM (L3 memory).

φ_1 φ_2 φ_3 φ_4 φ_5 φ_6 φ_7 φ_8 … φ_26φ_27
𝒘 ̂ 8 4 4 4 8 4 4 4 … 8 4
𝒙 ̂ 4 4 2 8 4 4 4 8 … 2 8

Table 3: the MobileNetV1 mixed-precision quantisation policy
that avoids accessing off-chip RAM. The layers that are not
reported use 8-bit weights and features.

https://github.com/pulp-platform/quantlib/
https://github.com/pulp-platform/quantlab

