
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Tiny decomposition of complex neural networks for heterogeneous 

microcontrollers
Biagio Montaruli, Andrea Santamaria, Danilo Pau

STMicroelectronics

Introduction

The deployment of neural network (NN) models on low-power

and resource-constrained devices represents a critical bottleneck

in the development of intelligent and autonomous Internet of

Things (IoT) systems due to their strict memory and computing

capabilities.

This problem has been addressed by the tinyML research and

industry communities using different approximation and

optimization techniques, such as parameters pruning and

sharing, quantization and knowledge distillation. Unfortunately,

these approaches often require to re-design or modify the

models’ topology, which implies significant effort and time, and

may lead to a reduction in terms of accuracy.

To overcome those issues, we propose a novel design

methodology based on a distributed approach, which aims at

automatically partitioning the execution of a NN over multiple

heterogeneous tiny devices (see Figure 1).

Such a methodology is formalized as an optimization problem

considering two objectives:

• minimize the inference latency, which is the total time to

perform a single inference and it takes into account both the

communication and computation time.

• maximize the throughput, which represents the inverse of the

waiting time between two consecutive inferences.

The proposed work has been evaluated over different NN

architectures and microcontrollers (MCUs) using two algorithms:

Full Search (FS) and Dichotomic Search (DS).

The implementation has been carried out with X-CUBE-AI v7.1.0

[1] in order to profile the chosen NN models, as well as to

automatically deploy and validate the obtained sub-models on the

target devices.

Dichotomic Search

Conclusions

The proposed methodology has been evaluated on several NN

models and MCUs using two different algorithms, FS and DS,

whose involve a trade-off between optimality of the solution and

computational complexity.

As future works, we plan to extend the experimental campaign

with additional state-of-the-art NN models, as well as to

implement algorithms that achieve even lower computational

complexity regarding DS and find the optimal solution as FS.

Full Search

References

[1] X-CUBE-AI - AI expansion pack for STM32CubeMX –

STMicroelectronics. Available online: www.st.com/en/embedded-

software/x-cube-ai.html

[2] Andrew G. Howard et al. "MobileNets: Efficient Convolutional 

Neural Networks for Mobile Vision Applications“, 2017.

[3] YAMNet source code and tutorial. Available online: 

www.tensorflow.org/hub/tutorials/yamnet.

[4] Arsha Nagrani et al. “VoxCeleb: a large-scale speaker 

identification dataset”, 2017.

[5] Yundong Zhang et al. “Hello Edge: Keyword Spotting

on Microcontrollers”, 2017.

It explores all the candidate solutions, one after the other, by

checking at each step whether the current candidate is feasible

and is better than the best solution found so far. If so, it updates

the current best solution with that candidate.

PROS: it always finds the best solution

CONS: time complexity is exponential in the number of layers

It is a recursive algorithm that produces a bisection tree, which is

explored in a depth-first search (DFS) fashion.

Moreover, for each new candidate, the DS checks whether it is

feasible and better than the best solution found so far.

PROS: time complexity is linear in the number of layers

CONS: by construction, finding the optimum is not guaranteed

Experimental evaluation Implementation

To evaluate the FS and DS algorithms a detailed experimental

campaign has been carried out considering seven NN models

(see Table 1) and nine STM32 MCUs (see Table 2) characterized

by heterogeneous memory and computational properties.

As for the NN models, we used three MobileNets v1 [2] trained

with different values for the α parameter (0.25, 0.30 and 0.35),

YAMNet 256, which is a modified version of the original YAMNet

model [3] obtained by taking the first 6 convolutional blocks, a

proprietary Convolutional Neural Network trained on the

VoxCeleb dataset [4], as well as the CNN and KWS-CNN

models for keyword spotting presented in [5].

Obtained results, summarized in Table 3, show that, the DS

algorithm achieved the best results in terms of computational

complexity in all cases. However, as for the YAMNet 256, it was

not able to find the optimal solution.

Table 1

Table 2

Table 3

Figure 3

Figure 2

On-device deployment of MobileNet v1 030 (shown in Figure 2)

and validation using X-CUBE-AI (see Figure 3).

Figure 1


