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TinyML is about Constraints
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Mismatch: AI has been evolving unconstrained for many years
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Everything Together: Real-world AI on Tiny MCUs 

Works on Cortex M7 MCU

Facemask Detection Person Detection

Two Generations of Innovations: MCUNet-v1 (2020), MCUNet-v2 (2021)
[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]
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Brief History of MCUNets
Reducing the model sizes with increasing accuracy
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[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]
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Opportunity in Fundamental ML Algorithms
Making algorithm more efficient under existing constraints

Faster than Moore’s Law: 
3.5x model size reduction every 12 months

Improving efficiency means more accurate models, 
too

TinyML is about improving the entire stack:  from 
design to deployment, from computation to data

[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN
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TinyNAS:
• Re-design the design space
• Latency-aware
• Energy-aware
• Once-for-all Network

TinyEngine:
• Co-design, specialization
• Offload run-time to compile-time
• Graph optimizations
• Memory-aware scheduling
• Low-precision
• Assembly-level optimizations

MCUNet-v1: TinyNAS+TinyEngine Co-design [MCUNet, NeurIPS'20]



New Problem: Imbalanced Memory Distribution of CNNs

9

Per-block memory usage of MobileNetV2

[MCUNet-v2, NeurIPS'21]



Solving the Imbalance with Patch-based Inference
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After applying Patch-based Inference

[MCUNet-v2, NeurIPS'21]



MCUNet-v2 Takeaways
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[MCUNet-v2, NeurIPS'21]

Solving inference bottleneck (peak memory) results in smaller and better models



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN



Once-for-All Network
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Train once, get many; Fit diverse hardware constraints
[OFA, ICLR'20]



Better Results with Much Smaller Training Cost
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Reduce the search cost from 42,000 GPU hours (Google) to 200 GPU hours

[OFA, ICLR'20]

Existing: Lots of hand tuning for different devices and latency.

OFA: Auto design the NN architecture at low cost



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseDiffAugment PVCNN



Problem in Training for Tiny Models 

16

Existing Training Techniques don't Apply to TinyML

Mixup DropBlock

AutoAugment

[NetAug, ICLR'22]



NetAug for TinyML
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Augment Model Rather than Data

Zero Inference Overhead

[NetAug, ICLR'22]



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGan PVCNN

[TinyTL, NeurIPS'20]



Problem: Training Memory is much Larger
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Bottleneck is Activation rather than Parameters
[TinyTL, NeurIPS'20]



TinyTL: Up to 6.5x Memory Saving without Accuracy Loss
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Use Fine-Tune Bias Only and Lite Residual Learning [TinyTL, NeurIPS'20]



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN

[DiffAugment, NeurIPS'20]



Data is Also Constrained
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Many TinyML Applications Have Limited Access to Data

Rare Defects Specific Tasks Privacy Concerns

[DiffAugment, NeurIPS'20]



Differentiable Augmentation
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Photo-realistic and Smooth Generation with 100 Training Images

[DiffAugment, NeurIPS'20]



Agenda
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Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseDiffAugment PVCNN



TinyML for LIDAR & Point Cloud
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Challenge: High Algorithm Complexity vs. Limited Computational Resource

[PCVNN, NeurIPS'19]
[SPVNAS, ECCV'20]
[PointAcc, Micro’21]
[TorchSparse, MLSys’22]



Full Stack LIDAR & Point Cloud Processing
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New Design Space + NAS + Inference Library 

20 Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu, and Song Han
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(a) Voxel-based convolution [206].
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(b) Point-based convolution [173, 232, 283].
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(c) Sparse convolution [56, 98, 99].
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(d) Point-voxel convolution [197, 258, 279].

Fig. 11. Overview of di�erent 3D point cloud convolutions, where (a) and (b) are conventional approaches
while (c) and (d) are emerging e�icient approaches.

DNNs composed of point cloud convolution operations. The major challenges for point cloud
convolution are two-folded: large memory footprint introduced by the additional spatial dimension,
and irregular memory access pattern introduced by sparse data format.

Point Cloud Convolution. The general form of point cloud convolution can be written as:

~: =
’

x8 2N(x: )
K(x: , x8 ) ⇥ F (x8 ), (7)

During the convolution, we iterate the center x: over the entire input. For each center, we �rst
index its neighbor x8 in neighborhood N(x: ), then convolve the neighboring features F (x8 ) with
the kernel K(x: , x8 ), and �nally produces the corresponding output ~: .

• Voxel-Based Convolution. Early research on 3D deep learning relies on volumetric representa-
tion to process point cloud data [58, 206, 231, 322, 355] (Figure 11a). The point cloud coordinates
p: are �rst quantized into integers, and the point cloud is converted to the dense tensor represen-
tation via voxelization. Maturana et al. [206] propose to generalize 2D CNNs to vanilla 3D CNNs
to further extract features from the voxel grids. Qi et al. [231] propose subvolume supervision and
anisotropic kernels for 3D CNNs, and systematically analyzed the relationship between 3D CNNs
and multi-view CNNs. Chang et al. [36] further extend 3D CNNs to object segmentation, which
is later improved by VoxSegNet [310] with dilated convolutions and squeeze-and-excitation
operations. Tchapmi et al. [282] propose SEGCloud that uses trilinear interpolation to alleviate
the information loss caused by voxelization. Voxel-based methods enjoy the regular memory
access pattern thanks to the dense volumetric representation. However, the memory footprint of

, Vol. 1, No. 1, Article . Publication date: September 2021.

Algorithm

Hardware System

[TorchSparse, MLSys’22]
GPU library for 3D sparse convolution

[Point-Voxel CNN, NeurIPS’19]
New design space for Point Cloud

[SPVNAS, ECCV’20]
3D neural architecture search

[PCVNN, NeurIPS'19]
[SPVNAS, ECCV'20]
[PointAcc, Micro’21]
[TorchSparse, MLSys’22]

[PointAcc, MICRO’21]
Hardware accelerator for point cloud



Takeaways: Coming Back to MCUNets
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Co-optimization on the entire stack is the key to 
unlock the most potential for TinyML



Effortlessly Empower Edge AI Everywhere



Fundamental Problems in TinyML
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ML under new HW constraints is very hard 

X

Training Deployment MaintainModel DesignData Collection
Typical AI/ML 
Development

Designing new models that works on different 
HW is still a manual and iterative approach

Slow Adoption Less Revenue/Volume

Mismatch



OmniML ”Compress” the Model Before Training
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Bring HW deployment constraints into model design and training

Training Deployment MaintainModel DesignData Collection

OmniML

Optimized for HW

ü



OmniML: Enable TinyML for All Vision Tasks
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Create the Best Models on Different Platforms Effortlessly

CV on Mobile 
Devices
• Pose estimation
• Scene Segmentation
• Image denoise, super 

resolution
• AR/VR

Sensor Fusion
3D Detection
Multi-sensor 3D object 
detection for automotive 
applications.

Smarter Cameras
Turn “dumb” cameras into 
AI-powered cameras with 
advanced CV features on 
low-power, low-cost chip.

40+ Customers Conversations 100K Installed devices10+ POCs

Computer Vision 
on MCUs
Not only classification but 
also object detection on 
microcontrollers with only 
256~512KB of memory.
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Come talk to us to learn more

We are hiring: 
https://omniml.ai/career/
contact@omniml.ai

Follow us: 
https://www.linkedin.com/company/omniml
https://twitter.com/OmniML_AI

Thank you



tinyML Summit 2022 Sponsors



Copyright Notice
This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the 
opinion of the author(s) and their respective companies. The inclusion of presentations in this 
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of 
the authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


