
March 28-30, 2022 | San Francisco Bay Area

Miniature dreams can come true…

TinyML for All: Full-stack Optimization
for Diverse Edge AI Platforms

Di Wu

Co-founder and CEO, OmniML

Song Han

Assistant Professor, MIT EECS

Co-founder and Chief Scientist, OmniML

TinyML is about Constraints

3

Mismatch: AI has been evolving unconstrained for many years

4

Everything Together: Real-world AI on Tiny MCUs

Works on Cortex M7 MCU

Facemask Detection Person Detection

Two Generations of Innovations: MCUNet-v1 (2020), MCUNet-v2 (2021)
[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]

5

Brief History of MCUNets
Reducing the model sizes with increasing accuracy

84

86

88

90

92

94

0 64 128 192 256 320 384

V
W

W
 A

cc
ur

ac
y

(%
)

Peak Memory Measured (KB)

MbV2+TF-Lite (Baseline) Proxyless+TF-Lite (Ours 2019)

MCUNet (Ours 2020) MCUNetV2 (Ours 2021)

256KB SRAM on MCU

+7%

3x Smaller

+4%

4x Smaller

90%
30KB

[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]

6

Opportunity in Fundamental ML Algorithms
Making algorithm more efficient under existing constraints

Faster than Moore’s Law:
3.5x model size reduction every 12 months

Improving efficiency means more accurate models,
too

TinyML is about improving the entire stack: from
design to deployment, from computation to data

[MCUNet, NeurIPS'20]
[MCUNet-v2, NeurIPS'21]

Agenda

7

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN

8

TinyNAS:
• Re-design the design space
• Latency-aware
• Energy-aware
• Once-for-all Network

TinyEngine:
• Co-design, specialization
• Offload run-time to compile-time
• Graph optimizations
• Memory-aware scheduling
• Low-precision
• Assembly-level optimizations

MCUNet-v1: TinyNAS+TinyEngine Co-design [MCUNet, NeurIPS'20]

New Problem: Imbalanced Memory Distribution of CNNs

9

Per-block memory usage of MobileNetV2

[MCUNet-v2, NeurIPS'21]

Solving the Imbalance with Patch-based Inference

10

After applying Patch-based Inference

[MCUNet-v2, NeurIPS'21]

MCUNet-v2 Takeaways

11

[MCUNet-v2, NeurIPS'21]

Solving inference bottleneck (peak memory) results in smaller and better models

Agenda

12

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN

Once-for-All Network

13

Train once, get many; Fit diverse hardware constraints
[OFA, ICLR'20]

Better Results with Much Smaller Training Cost

14

Reduce the search cost from 42,000 GPU hours (Google) to 200 GPU hours

[OFA, ICLR'20]

Existing: Lots of hand tuning for different devices and latency.

OFA: Auto design the NN architecture at low cost

Agenda

15

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseDiffAugment PVCNN

Problem in Training for Tiny Models

16

Existing Training Techniques don't Apply to TinyML

Mixup DropBlock

AutoAugment

[NetAug, ICLR'22]

NetAug for TinyML

17

Augment Model Rather than Data

Zero Inference Overhead

[NetAug, ICLR'22]

Agenda

18

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGan PVCNN

[TinyTL, NeurIPS'20]

Problem: Training Memory is much Larger

19

Bottleneck is Activation rather than Parameters
[TinyTL, NeurIPS'20]

TinyTL: Up to 6.5x Memory Saving without Accuracy Loss

20

Use Fine-Tune Bias Only and Lite Residual Learning [TinyTL, NeurIPS'20]

Agenda

21

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseTinyGAN PVCNN

[DiffAugment, NeurIPS'20]

Data is Also Constrained

22

Many TinyML Applications Have Limited Access to Data

Rare Defects Specific Tasks Privacy Concerns

[DiffAugment, NeurIPS'20]

Differentiable Augmentation

23

Photo-realistic and Smooth Generation with 100 Training Images

[DiffAugment, NeurIPS'20]

Agenda

24

Focus on Constraints on the Entire Stack

Training Deployment MaintainModel DesignData Collection

MCUNet-v1, MCUNet-v2

NetAug TinyTL

Once-for-All

TorchSparseDiffAugment PVCNN

TinyML for LIDAR & Point Cloud

25

Challenge: High Algorithm Complexity vs. Limited Computational Resource

[PCVNN, NeurIPS'19]
[SPVNAS, ECCV'20]
[PointAcc, Micro’21]
[TorchSparse, MLSys’22]

Full Stack LIDAR & Point Cloud Processing

26

New Design Space + NAS + Inference Library

20 Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu, and Song Han

w-1,-1 w-1,0 w-1,1

w0,-1 w0,0 w0,1

w1,-1 w1,0 w1,1

p1,1

p2,4

p3,2

w-1,-1 w-1,0 w-1,1

w0,-1 w0,0 w0,1

w1,-1 w1,0 w1,1 p1,1

p2,4

p3,2

f1,1 = f1+i,1+j wi, j
1

∑
i=�1

1
∑
j=�1

f3,2 = f3+i, 2+j wi, j
1

∑
i=�1

1
∑
j=�1

(a) Voxel-based convolution [206].

f0 = max(f0w, f1w)

f4 = max(f2w, f3w, f4w)

p2 p3

p0

p1

p4

p0

p4

farthest
point sampling

ball / kNN
query

(b) Point-based convolution [173, 232, 283].

p0

p1 p2

p3

p4

p0

p1 p2

p3

p4

f0 = f0w0, 0 + f1w1, -1

f3 = f3w0, 0 + f4w1, 1Inactivated
(not stored)

Activated
(stored) w-1,-1 w-1,0 w-1,1

w0,-1 w0,0 w0,1

w1,-1 w1,0 w1,1

w-1,-1 w-1,0 w-1,1

w0,-1 w0,0 w0,1

w1,-1 w1,0 w1,1

(c) Sparse convolution [56, 98, 99].

Devoxelize

Normalize

Voxelize Voxel
Conv

Add

Multi-Layer Perceptron

Voxel-Based Feature Aggregation (Coarse-Grained)

Point-Based Feature Transformation (Fine-Grained)

(d) Point-voxel convolution [197, 258, 279].

Fig. 11. Overview of di�erent 3D point cloud convolutions, where (a) and (b) are conventional approaches
while (c) and (d) are emerging e�icient approaches.

DNNs composed of point cloud convolution operations. The major challenges for point cloud
convolution are two-folded: large memory footprint introduced by the additional spatial dimension,
and irregular memory access pattern introduced by sparse data format.

Point Cloud Convolution. The general form of point cloud convolution can be written as:

~: =
’

x8 2N(x:)
K(x: , x8) ⇥ F (x8), (7)

During the convolution, we iterate the center x: over the entire input. For each center, we �rst
index its neighbor x8 in neighborhood N(x:), then convolve the neighboring features F (x8) with
the kernel K(x: , x8), and �nally produces the corresponding output ~: .

• Voxel-Based Convolution. Early research on 3D deep learning relies on volumetric representa-
tion to process point cloud data [58, 206, 231, 322, 355] (Figure 11a). The point cloud coordinates
p: are �rst quantized into integers, and the point cloud is converted to the dense tensor represen-
tation via voxelization. Maturana et al. [206] propose to generalize 2D CNNs to vanilla 3D CNNs
to further extract features from the voxel grids. Qi et al. [231] propose subvolume supervision and
anisotropic kernels for 3D CNNs, and systematically analyzed the relationship between 3D CNNs
and multi-view CNNs. Chang et al. [36] further extend 3D CNNs to object segmentation, which
is later improved by VoxSegNet [310] with dilated convolutions and squeeze-and-excitation
operations. Tchapmi et al. [282] propose SEGCloud that uses trilinear interpolation to alleviate
the information loss caused by voxelization. Voxel-based methods enjoy the regular memory
access pattern thanks to the dense volumetric representation. However, the memory footprint of

, Vol. 1, No. 1, Article . Publication date: September 2021.

Algorithm

Hardware System

[TorchSparse, MLSys’22]
GPU library for 3D sparse convolution

[Point-Voxel CNN, NeurIPS’19]
New design space for Point Cloud

[SPVNAS, ECCV’20]
3D neural architecture search

[PCVNN, NeurIPS'19]
[SPVNAS, ECCV'20]
[PointAcc, Micro’21]
[TorchSparse, MLSys’22]

[PointAcc, MICRO’21]
Hardware accelerator for point cloud

Takeaways: Coming Back to MCUNets

27

Co-optimization on the entire stack is the key to
unlock the most potential for TinyML

Effortlessly Empower Edge AI Everywhere

Fundamental Problems in TinyML

29

ML under new HW constraints is very hard

X

Training Deployment MaintainModel DesignData Collection
Typical AI/ML
Development

Designing new models that works on different
HW is still a manual and iterative approach

Slow Adoption Less Revenue/Volume

Mismatch

OmniML ”Compress” the Model Before Training

30

Bring HW deployment constraints into model design and training

Training Deployment MaintainModel DesignData Collection

OmniML

Optimized for HW

ü

OmniML: Enable TinyML for All Vision Tasks

31

Create the Best Models on Different Platforms Effortlessly

CV on Mobile
Devices
• Pose estimation
• Scene Segmentation
• Image denoise, super

resolution
• AR/VR

Sensor Fusion
3D Detection
Multi-sensor 3D object
detection for automotive
applications.

Smarter Cameras
Turn “dumb” cameras into
AI-powered cameras with
advanced CV features on
low-power, low-cost chip.

40+ Customers Conversations 100K Installed devices10+ POCs

Computer Vision
on MCUs
Not only classification but
also object detection on
microcontrollers with only
256~512KB of memory.

Di Wu
• Previous tech lead at Facebook

AI, PyTorch accelerator enablement
• Product and engineering leader at

Falcon Computing Solutions (acquired
by Xilinx)

• PhD from UCLA, years of experience
in customized hardware systems at
Intel Lab, MSRA.

Huizi Mao
• PhD from Stanford. Co-Inventor of

“Deep Compression”
• Early member of DeePhi and

Megvii.
• Worked at Google Research,

Facebook AML and NVIDIA.
• NVIDIA Fellowship Recipient.

Song Han
• Assistant professor at MIT, PhD from

Stanford
• Co-founder of DeePhi Tech (acquired

by Xilinx)
• “35 Innovators Under 35” by MIT

Technology Review
• NSF CAREER Award, IEEE “AIs 10 to

Watch”
• Inventor of “Deep Compression”
• 29K Google Scholar citations

Founding Team
Leading Experts in Efficient Deep Learning

32

Come talk to us to learn more

We are hiring:
https://omniml.ai/career/
contact@omniml.ai

Follow us:
https://www.linkedin.com/company/omniml
https://twitter.com/OmniML_AI

Thank you

tinyML Summit 2022 Sponsors

Copyright Notice
This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

