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TinyML is about Constraints

Mismatch: Al has been evolving unconstrained for many years
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Cloud Al Mobile Al Tiny Al
Computation 10 TFLOPS GFLOPS MFLOPS
Memory 32GB 4GB 256KB

\ /'

100,000x smaller
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Everything Together: Real-world Al on Tiny MCUs

Two Generations of Innovations: MCUNet-v1 (2020), MCUNet-v2 (2021)

Facemask Detection Person Detection

Works on Cortex M7 MCU

[MCUNet, NeurlPS'20]
[MCUNet-v2, NeurlPS'21]
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: : [MCUNet, NeurlPS'20]
Brief Hlstory of MCUNets [MCUNet-v2, NeurlPS'21]

Reducing the model sizes with increasing accuracy
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Opportunity in Fundamental ML Algorithms [MCUNet, NeurlPS'20]

[MCUNet-v2, NeurlPS'21]
Making algorithm more efficient under existing constraints

[ MBv2 (scaled to fit MCU)

‘j Faster than Moore's Law: e B MCUNet (ours
3.5x model size reduction every 12 months
71%
70
O Improving efficiency means more accurate models, s
= too
- 60
N : : : . : 55 54%
:e. TinyML is about improving the entire stack: from
) design to deployment, from computation to data 50

ImageNet Top-1 Accuracy
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Agenda

Focus on Constraints on the Entire Stack

Data Collection

Model Design

TinyGAN

MCUNet-v1, MCUNet-v2

Once-for-

PVCNN

Training

All

Deployment

Maintain

TorchSparse TinyTL
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MCUNet-v1: TinyNAS+TinyEngine Co-design IMCUNet, NeurlPS 20

AutoML, Efficient Neural Architecture
CE ] MCUNet

‘\

Efficient Compiler / Runtime

TinyNAS: TinyEngine:

* Re-design the design space « Co-design, specialization
 Latency-aware  Offload run-time to compile-time
» Energy-aware * Graph optimizations

« Once-for-all Network * Memory-aware scheduling

* Low-precision
« Assembly-level optimizations
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New Problem: Imbalanced Memory Distribution of CNNS meuesz newes2

Per-block memory usage of MobileNetV2
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Solving the Imbalance with Patch-based Inference

After applying Patch-based Inference
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per-patch inference —>

per-layer inference —> peak mem: 172kB

[MCUNet-v2, NeurlPS'21]

Low
mem.
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T High
/ mem.
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New peak

256kB constraint of MCU

Block Index
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MCUNet-v2 Takeaways

[MCUNet-v2, NeurlPS'21]

Solving inference bottleneck (peak memory) results in smaller and better models

\_

r

(1) Patch-based Inference

Per-layer Inference
I peak SRAM: 1372kB

J

Per-patch Inference
peak SRAM: 172kB

r

(2) Network Redistribution

MbVv2

<— per-patch —»

gl

MbV2-RD & husl

\_

gl

<+—— per-layer ——»

OO0 RRRN0nt
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Receptive Field (RF)

[TV

J

Neural architecture
.

(3) Joint Automated Search

S=g S

Inference scheduling y
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Agenda

Focus on Constraints on the Entire Stack

Data Collection

Model Design

Training

Once-for-All

12

Deployment

Maintain
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Once-fo r-AI | Netwo rk [OFA, ICLR'20]

Train once, get many; Fit diverse hardware constraints
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Better Results with Much Smaller Training Cost OFA. ICLR'20]
Reduce the search cost from 42,000 GPU hours (Google) to 200 GPU hours

Specialize for 35(ms) topl 78.47(%)

+

MBConv3-3x3
MBConv4-7x7
MBConv6-3x3
MBConv4-7x7
MBConv6-3x3
MBConv3-7x7
MBConv6-3x3
MBConv4-3x3
MBConv4-7x7
MBConv4-7x7
MBConv3-7x7
MBConv3-3x3
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Existing: Lots of hand tuning for different devices and latency.

OFA: Auto design the NN architecture at low cost
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Agenda

Focus on Constraints on the Entire Stack

Data Collection

Model Design

Training

Deployment

Maintain
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Problem in Training for Tiny Models

[NetAug, ICLR'22]
Existing Training Techniques don't Apply to TinyML

ey [ Baseline [] Mixup B AutoAugment E DropBlock
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[l Baseline [[] Mixup [l AutoAugment [l Dropblock
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Batch 1 2 5 2 : . . ; 7‘
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" MobileNetV2-Tiny (23.5M MACs)
I I I u . AutoAugment
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NetAug for TlnyM L [NetAug, ICLR'22]

Augment Model Rather than Data

a B Baseline [] Mixup [ AutoAugment [ Dropblock
Build an Augmented Model 54
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ImageNet Top1
(%)

S
(00}

MobileNetV2-Tiny (23.5M MACs)

B Baseline [] Mixup [ AutoAugment [ Dropblock [l NetAug
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Zero Inference Overhead

MobileNetV2-Tiny (23.5M MACs)
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Agenda

Focus on Constraints on the Entire Stack

Data Collection

Model Design

Training

Deployment

[TinyTL, NeurlPS'20]

Maintain

TinyTL
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Problem: Training Memory is much Larger

Bottleneck is Activation rather than Parameters

900

675

MbV2
Memory Footprint (MB)
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Inference
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Training
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0 B v —4.3x

19

[TinyTL, NeurlPS'20]

B ResNet-50 B MbV2-1.4

13.9x larger

Activation is the
main bottleneck,
not parameters.

Param (MB) Activation (MB)
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TinyTL: Up to 6.5x Memory Saving without Accuracy Loss

Use Fine-Tune Bias Only and Lite Residual Learning [TinyTL, NeurlPS'20]

¥ TinyTL Fine-tune BN+Last [1] > Fine-tune Last[2] + Fine-tune Full Network [3]
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Agenda

Focus on Constraints on the Entire Stack

[DiffAugment, NeurlPS'20]

Data Collection

TinyGAN

Model Design

Training

Deployment

Maintain
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Data is Also Constrained DiffAugment, NeurlP$'20]
Many TinyML Applications Have Limited Access to Data

Rare Defects Specific Tasks Privacy Concerns
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Differentiable Augmentation

[DiffAugment, NeurlPS'20]
Photo-realistic and Smooth Generation with 100 Training Images

B StyleGAN2 (baseline) Bl + DiffAugment (ours)

FID ¢

100% training data

20% training data 10% training data
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Agenda

Focus on Constraints on the Entire Stack

Data Collection

Model Design

Training

PVCNN

Deployment

TorchSparse

Maintain
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[PCVNN, NeurlPS"19]

TinyML for LIDAR & Point Cloud [SPVNAS, ECCV'20]
. . [PointAcc, Micro’21]
Challenge: High Algorithm Complexity vs. Limited Computational Resource [TorchSparse, MLSys'22]
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Full Stack LIDAR & Point Cloud Processing

New Design Space + NAS + Inference Library

Point-Based Feature Transformation (Fine-Grained)

..... ................................................... >0 .
L] L]
Greecrtecannne Multi-Layer Perceptron ............... »o —
B et °
l Normalize T Add
o - Voxelize Voxel Devoxelize
' e e
[ ]

Voxel-Based Feature Aggregation (Coarse-Grained)

[Point-Voxel CNN, NeurlPS’19]
New design space for Point Cloud

.............................................
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[PointAcc, MICRO’21]

Hardware accelerator for point cloud

Fine-Grained Channel + Elastic Depth

Stage I
(Depth: 3)
+
Stage 11
(Depth: 2,3)
+
Stage III

(Depth: 1,2,3) D_.

Maps
(In, Out, Wgt)
(Po. Q1, W-1.1)
(P3, Qa, Woa1) "
(P1, Q3, W.1,0)
(Po. Qo. Woo)
(P1, Q1, Woo)
(P2, Q2, Woo)
(P3. Q3. Wo,)
(P4, Qa4, Woo)
(P3, Q1, W1o)
(P1, Qo, W14)
(Ps. Q3. W11)
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[SPVNAS, ECCV'20);

3D neural architecture search . -

[TorchSparse, MLSys’22]
GPU library for 3D sparse convolution

Weight Sharing

# COHI

g
O
3k

max #Cy,

max Cout

Uniform
Sampling

GPU#1 GPU#%N

[PCVNN, NeurlPS'19]
[SPVNAS, ECCV'20]
[PointAcc, Micro’21]
[TorchSparse, MLSys'22]
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Takeaways: Coming Back to MCUNets

AutoML, Efficient Neural Architecture

Efficient Compiler / Runtime

36. Co-optimization on the entire stack is the key to
unlock the most potential for TinyML
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MOMNI ™

Effortlessly Empower Edge Al Everywhere



Fundamental Problems in TinyML

ML under new HW constraints is very hard

Typical Al/ML
Development

Data Collection

y

Mismatch

X

MOMNI™

Slow Adoption » Less Revenue/Volume

:

Model Design

A

Training

» Deployment

» Maintain

Designing new models that works on different
HW is still a manual and iterative approach

29




OmniML “Compress” the Model Before Training g o~y

Bring HW deployment constraints into model design and training

Optimized for HW

nnnnnn
OmniML
Data Collection Model Design Training Deployment Maintain
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OmniML: Enable TinyML for All Vision Tasks

Create the Best Models on Different Platforms Effortlessly

MOMNI™

CV on Mobile

Devices

Pose estimation
Scene Segmentation
Image denoise, super

| .
resolution

855
’ AR/VR

Sensor Fusion
3D Detection

Multi-sensor 3D object
detection for automotive
applications.

Qualcomm
snapdragon

Smarter Cameras

Turn “dumb” cameras into
Al-powered cameras with
advanced CV features on
low-power, low-cost chip.

Computer Vision
on MCUs

Not only classification but
also object detection on
microcontrollers with only
256~512KB of memory.

40+ Customers Conversations 1 O+ POCs 1 OOK Installed devices

31



Founding Team
Leading Experts in Efficient Deep Learning

Song Han

Assistant professor at MIT, PhD from
Stanford

Co-founder of DeePhi Tech (acquired
by Xilinx)

“35 Innovators Under 35" by MIT
Technology Review

NSF CAREER Award, IEEE “Als 10 to
Watch”

Inventor of “Deep Compression”
29K Google Scholar citations

o

Di Wu

* Previous tech lead at Facebook
Al, PyTorch accelerator enablement

» Product and engineering leader at
Falcon Computing Solutions (acquired
by Xilinx)

* PhD from UCLA, years of experience
in customized hardware systems at
Intel Lab, MSRA.

MOMNI™

Huizi Mao

PhD from Stanford. Co-Inventor of
"Deep Compression”

Early member of DeePhi and
Meguvii.

Worked at Google Research,
Facebook AML and NVIDIA.
NVIDIA Fellowship Recipient.
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Thank you

‘Come talk to us to learn more

Follow us:

https://www. inkedin.com/cor

We are hiring:
https://omniml.ai/career/
contact@omniml.ai
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