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Abstract

Syntiant TinyML Board

Syntiant NDP101

Use Cases

In this poster, we present our new TinyML development board designed for battery-

powered always-on edge-AI applications. The board contains an IMU sensor for

motion sensing, a MEMS microphone for audio applications, and a uSD card slot

for data collection. Having an ultra-low-power NDP101 chip at its core, the dream

of having a sub-mW edge-AI system can readily come true. DNN models can be

trained and uploaded to the board using the Edge Impulse platform. The poster will

also present two use cases for the board in which we demonstrate how to build

audio and motion detection models and deploy them on the board. The board can

be seen as a step toward democratizing “Tiny” machine learning.

Introduction

❖ TinyML– the intersection of embedded systems and ML [1]

❖ Deploying ML models at the edge where the data exists. 

❖ Lower latency, better privacy, lower power, and higher reliability.

❖ Deep learning [2]: Learning a hierarchical representation with 

increasing levels of abstraction.

❖ DL/ML for time-series data

❖ Keyword spotting (KWS) - Traditional approaches (e.g., HMMs) vs. 

DNNs[3] : less computational complexity and superior performance.

❖ Extending to variety of audio/voice and sensor applications.

❖ Always-on intelligence with Syntiant NDPs (Figure 1)

❖ Event-driven processing for different sensing modalities.

Figure 4: Syntiant Neural Decision Processor (NDP) chip – block diagram.

Figure 1: Saving the power consumption in an AIOT system by using the always-on intelligence.

❖ Purpose-built to run deep neural network models (DNN) (Figure 4) 

❖ At-memory computation – Exploits the inherent parallelism of 

DNNs while computing at required numerical precision.

❖ Compared to CPU/MCUs and DSPs, NDP10x delivers 20x more 

throughput and consumes 200x less energy per inference [4].

❖ Syntiant TinyML board (Figure 2)  

❖ A self-contained edge-AI inference system for audio and 

motion applications (Figure 3).

❖ An ideal platform for data collection

❖ With a 32GB micro-SD card

❖ > 3 days of uncompressed audio data (Fs = 16kHz)

❖ > 300 days of 6-axis IMU sensor data (Fs = 100Hz)

Figure 3: Syntiant TinyML board – block diagram.

❖ Syntiant Core 1

❖ Configurable Fully-connected layers (FC) (Figure 5)

❖ 590k parameters, ReLU and softmax activations, Programmable 

interlayer scaling

❖ Max frame rate: 200Hz

❖ Other features:

❖ 2 PDM microphones, I2S or PCM-over-SPI input

❖ SPI / I2C interface for sensors

❖ Supports frequency-domain and time-domain inputs

❖ Configurable FFT-based feature extraction (can be used for 

speech audio and non-speech event detection.)

❖ 96kB holding tank

❖ Embedded ARM Cortex-M0 processor

❖ Can be used for preprocessing the input data, posterior 

handling (to improve FAR and FRR), etc.

❖ Always-on power consumption

❖ 140uW for audio/voice applications.

❖ 100uW for sensor data (by-passing the feature extractor).

❖ Modeling and deployment process for NDP101 (Figure 6)

❖ It always starts with data!

❖ Open-source datasets if available, otherwise the data needs 

to be collected, cleaned and properly labeled.

❖ Data-augmentation

Figure 6: Training a DNN model and deploying it on NDP101

❖ Use case #1: key word speech interface (Table 1)

❖ Edge Impulse platform

❖ Dataset: Google’s Speech Commands

❖ Training to detect to two keywords : “Go” and “Stop”

❖ 3 output classes: “Go”, “Stop”, and “Unknown” (Figure 6)

❖ Separation between the classes (Figure 7)

❖ Model accuracy on the test set: 97.17% (Figure 8)

Figure 8: The training set visualization (from Edge Impulse platform).

Figure 9: Model performance – confusion matrix (from Edge Impulse platform)

Modeling Parameters (Table 1)

Data pre-processing

Sampling frequency 16kHz

Frame length and stride 32 ms, 24 ms

Window length (input to DNN) 986 ms

# DCT features, FFT length 40, 512

Dataset size [samples] 9868

Dataset split: (training, val., test) (72%, 8%, 20%)

Data augmentation

SpecAugment [5]: time mask param. (T) 1

Additive gaussian noise: stddev 0.2

DNN model

# of FC layers 4

# of input features 1600

# of output classes 3

Hidden layers width 256

Activation function ReLU, Softmax

Training

Epochs, Batch size 50, 32

Optimizer Adam

Learning rate 0.0005

Initial decay rates: (β1,β2) (0.9,0.999)

Loss function Crossentropy

Regularization

Dropout 0.2 

❖ Use case #2: hand/wrist gesture detection (Table 2)

❖ Trained and deployed using Syntiant TDK/SDK tool-chain.

❖ Dataset : collected by Harvey Mudd Clinic Team [6].

❖ 4 output classes: “watch-check, “outward-flick”, “inward-flick” 

and “Unknown” (Figure 10)

❖ Time-domain 6-axis IMU sensor data (Figure 11)

❖ the feature extractor was bypassed in the NDP chip.

❖ Data frame and window structures – creating the input vector 

fed into the DNN (1440 features) (Figure 12).

❖ Model accuracy on the test set: 99.64% (Figure 13).

Figure 10: Wrist band with TinyML 

board - The gestures definition.

Figure 11: Samples from the training set (2.4s input window to the DNN) – Ax,y,z: Linear accel., 

Gx,y,z: Angular velocity. Scaled from +/-8g m/s2 and +/- 2000 degrees/s to 8-bit values [-128,128).

Modeling Parameters (Table 2)

Data pre-processing

Sampling frequency 100Hz

Frame length and stride 60 ms, 60 ms

Window length (input to DNN) 2.4 s (40 frames)

Dataset size [samples] 25000

Dataset split: (training, val., test) (65%, 23%,12%)

Data augmentation

Time shift [ms] [-400, 400]

DNN model

# of FC layers 4

# of input features 1440

# of output classes 4

Width of hidden layers 256

Activation function ReLU, Softmax

Training

Epochs, Batch size 25, 32

Optimizer SGD 

Learning rate 0.001

Learning rate decay 10-7

Momentum (+ Nesterov momentum) 0.9

Loss function Crossentropy

Regularization

Dropout 0.2 

Figure 12: The hand/wrist gesture detection 

model performance confusion matrix.

Figure 5: Four configurable FC layers in Syntiant Core 1

Figure 2: Syntiant TinyML board (left), Link for purchasing TinyML boards (center), Comparing a 

TinyML board with an Apple Watch Series 7 (right)
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Figure 12: Constructing data frames and windows as the input of the DNN model from time-

domain 6-axis IMU data samples.

Conclusion
❖ The Syntiant TinyML board can enable variety of ML use cases at 

the edge including keyword speech interface, acoustic event detection, 

sensor applications, and condition-based monitoring.

❖ TinyML models can be easily trained on the Edge Impulse platform and 

deployed on the board.

❖ NDP101 is tailored to run DNN models – The most efficient solution.
❖ Small foot-print fully-connected models are effective and 

computationally efficient for audio and sensor applications– more 

advanced models such as RCNNs, DS-CNNs [7] and Transformers [8] 

can be deployed on our Syntiant Core 2 available in NDP120/200.

❖ The two models presented here did not have production-level FAR/FRR 

because of using relatively small datasets. 
❖ The performance can be improved by collecting more data that 

captures the application environment, using more advanced data 

augmentation techniques and applying hard negative mining.

Figure 7: Samples from the training set – time-domain (input to the feature extractor) and 

frequency-domain (input to the DNN) [from Edge Impulse platform]

https://www.syntiant.com/post/keyword-spotting-power-comparison

