“ML using micro-electromechanical system (MEMS)”

Fadi Alsaleem, Ph.D – University of Nebraska - Lincoln

May 31, 2022
Thank you, tinyML Strategic Partners*, for committing to take tinyML to the next Level, together

* as of March 28, 2022; several more under final reviews
Executive Strategic Partners
Arm AI Virtual Tech Talks

The latest in AI trends, technologies & best practices from Arm and our Ecosystem Partners.

Demos, code examples, workshops, panel sessions and much more!

Fortnightly Tuesday @ 4pm GMT/8am PT

Find out more: www.arm.com/techtalks
The leading edge ML platform

www.edgeimpulse.com
Advancing AI research to make efficient AI ubiquitous

Power efficiency
- Model design, compression, quantization, algorithms, efficient hardware, software tool

Personalization
- Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning
- Robust learning through minimal data, unsupervised learning, on-device learning

Perception
- Object detection, speech recognition, contextual fusion

Reasoning
- Scene understanding, language understanding, behavior prediction

Action
- Reinforcement learning for decision making

A platform to scale AI across the industry

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
SYNTHIANT

Neural Decision Processors
- At-Memory Compute
- Sustained High MAC Utilization
- Native Neural Network Processing

ML Training Pipeline
- Enables Production Quality Deep Learning Deployments

Data Platform
- Reduces Data Collection Time and Cost
- Increases Model Performance

End-to-End Deep Learning Solutions for TinyML & Edge AI

partners@syntiant.com
www.syntiant.com
Platinum Strategic Partners
Fastest Video Analytics Solutions on Arm CPUs
KLIKA TECH
GLOBAL IOT SOLUTIONS
Add Advanced Sensing to your Product with Edge AI / TinyML

Pre-built Edge AI sensing modules, plus tools to build your own

Reality AI solutions
- Prebuilt sound recognition models for indoor and outdoor use cases
- Solution for industrial anomaly detection
- Pre-built automotive solution that lets cars "see with sound"

Reality AI Tools® software
- Build prototypes, then turn them into real products
- Explain ML models and relate the function to the physics
- Optimize the hardware, including sensor selection and placement

https://reality.ai info@reality.ai @SensorAI Reality AI
BROAD AND SCALABLE EDGE COMPUTING PORTFOLIO

Microcontrollers & Microprocessors

Arm® Core
- Arm® Cortex®-M 32-bit MCUs
 - Arm ecosystem, Advanced security, Intelligent IoT
- Arm®-based High-end 32 & 64-bit MPUs
 - High-resolution HMI, Industrial network & real-time control
- Arm® Cortex®-M0+ Ultra-low Power 32-bit MCUs
 - Innovative process tech (SOTB), Energy harvesting

Renesas Core
- Ultra-low Energy 8 & 16-bit MCUs
 - Bluetooth® Low Energy, SubGHz, LoRa®-based Solutions
- High Power Efficiently 32-bit MCUs
 - Motor control, Capacitive touch, Functional safety, GUI
- 40nm/28nm process Automotive 32-bit MCUs
 - Rich functional safety and embedded security features

Renesas Synergy™
- Arm®-based 32-bit MCUs for Qualified Platform
- Qualified software and tools

Core technologies

AI
- A broad set of high-power and energy-efficient embedded processors

Security & Safety
- Comprehensive technology and support that meet the industry's stringent standards

Digital & Analog & Power Solution
- Winning Combinations that combine our complementary product portfolios

Cloud Native
- Cross-platforms working with partners in different verticals and organizations

© 2021 Renesas Electronics Corporation. All rights reserved.
Gold Strategic Partners
Maxim Integrated: Enabling Edge Intelligence

Advanced AI Acceleration IC
The new MAX78000 implements AI inferences at low energy levels, enabling complex audio and video inferencing to run on small batteries. Now the edge can see and hear like never before.

www.maximintegrated.com/MAX78000

Low Power Cortex M4 Micros
Large (3MB flash + 1MB SRAM) and small (256KB flash + 96KB SRAM, 1.6mm x 1.6mm) Cortex M4 microcontrollers enable algorithms and neural networks to run at wearable power levels.

www.maximintegrated.com/microcontrollers

Sensors and Signal Conditioning
Health sensors measure PPG and ECG signals critical to understanding vital signs. Signal chain products enable measuring even the most sensitive signals.

www.maximintegrated.com/sensors
LatentAI

Adaptive AI for the Intelligent Edge

Latentai.com
Deploy TinyML into the Real World - Plug and Play ML

Sensors:
- modulated and ready-to-use sensors to simplify the setup process
- support 500+ Grove modules

Codecraft:
- no code programming platform to Get Started With TinyML
- supports Arduino, Python, C or JavaScript etc.

Wio Terminal:
- completed AI platform integrated with a 2.4” LCD Screen, onboard IMU (LIS3DHT), microphone, buzzer, microSD card slot, light sensor, infrared emitter (IR 940nm)

Edge Impulse:
- to optimize data utilization and enable deploy a machine learning model faster than ever

TensorFlow Lite:
- to easily train low memory usage machine learning models

Applications:
- Artificial Nose
- AI Thermal Camera for Safe Camping
- Azure IoT Squirrel Feeder

Sense
- Train
- Inference
Build Smart IoT Sensor Devices From Data

SensiML pioneered TinyML software tools that auto generate AI code for the intelligent edge.

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each step in the pipeline

We enable the creation of production-grade smart sensor devices.

sensiml.com
SynSense builds sensing and inference hardware for ultra-low-power (sub-mW) embedded, mobile and edge devices. We design systems for real-time always-on smart sensing, for audio, vision, IMUs, bio-signals and more.

https://SynSense.ai
Silver Strategic Partners
Our next tinyML Trailblazers Series
Success Stories with Mouna Elkhatib
(CEO, CTO, and Co-Founder, AONDevices Inc.)

LIVE ONLINE June 7th, 2022 at 8 am PDT

Register now!
Join Growing tinyML Communities:

Meetup

tinyML - Enabling ultra-low Power ML at the Edge

9.7k members in 45 Groups in 36 Countries

LinkedIn

The tinyML Community
https://www.linkedin.com/groups/13694488/

2.8k members & 7.2k followers
Subscribe to tinyML YouTube Channel for updates and notifications (including this video)
www.youtube.com/tinyML
Next tinyML Talks

<table>
<thead>
<tr>
<th>Date</th>
<th>Presenter</th>
<th>Topic / Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 3</td>
<td>Peter Ing, Senior Mechatronics Engineer, TFG Ambassador, Edge Impulse</td>
<td>TinyML South Africa Meetup Kickoff 2022</td>
</tr>
</tbody>
</table>

Webcast start time is 8:00 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting
Reminders

Slides & Videos will be posted tomorrow

Please use the Q&A window for your questions

tinyml.org/forums youtube.com/tinyml
Dr. Alsaleem joined the college of engineering at the University of Nebraska at Lincoln (UNL) in August 2016. Before this assignment, he worked for multiple years in the industry including four years as a Senior Lead Algorithm Engineer at Emerson Electric Inc to develop novel (cloud-based) sensor monitoring and learning algorithms used for fault diagnostics for mechanical systems. His current and future potential research goals are to vertically advance the fields of intelligent wearable sensing technologies and artificial intelligence algorithms and their use in many health and medical applications. In this research area, he has more than 10 awarded patents, more than 100 publications, presentations, and invited talks, and over 6 million total (near 1.5 million to his research team) of active funding to support his research work.
Objective: Develop ultra-power computing unit for tiny devices such as wearable devices to locally perform machine-learning algorithms.

How: The algorithms will be coded in the mechanical responses of multiple MEMS that also simultaneously capture the measurement of interest such as acceleration.

Potential:
(1) It will enable performing a complete ML algorithm at the sensor physical layer at a fraction of power requirement for an architecture with similar computational capabilities.
(2) Enable a novel simultaneous sensing and computing paradigm that eliminates the need for sensors interface and DSP to perform similar computation.
Team

- Prof. Siavash Pourkamali Anaraki
- Prof. Roozbeh Jafari
- Hamed Nikfarjam
- Muhammad Emad-Ud-Din
- Mohammad Hassan

1 The University of Texas at Dallas
2 Texas A&M University
3 Columbus State University

Special thanks for my PhD advisor: Dr. Mohammad Younis
Our team MEMS computing advancement summary

(a) Conventional MEMS operating as an analog sensor. The MEMS produces a voltage that requires multiple stages of conditioning before it can be read/processed by a processor. (b) My work: previous work of using MEMS as a self-activating threshold switch (TS) if acceleration exceeds a threshold value. (c) A small network of TSs engineered to produce digital acceleration measurement. (d) Our new work: for using a fully coupled small network of bi-stable TSs as a neural computing unit. This network can be trained to perform intelligent tasks like fall detection.
Accelerometer advancement

.75in*2in*8.5 in size and 1 lb weight

$420 in 1930!!!!!
How MEMS accelerometer works?

Capacitance = constant * A/d

Relative deflection of the structure

\[|z(t)\omega_n^2| = |\dot{\ddot{y}}| \]

Acceleration of the base
Smart threshold acceleration switch

\[V_{DC} = 0F_0 \]

\[V_{DC} < V_{pull-in} \]

\[V_{DC} > V_{pull-in} \]

Nonlinear Electrostatic Force + Shock Load = Early Dynamic Pull-in (Failure)

Switch On

Switch Off
Mechanical digital accelerometer!

<table>
<thead>
<tr>
<th>Acceleration</th>
<th>MSB Bit 1</th>
<th>LSB Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.25 FSa*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25 FSa - 0.5 FSa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5 FSa - 0.75 FSa</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.75 FSa <</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*FSa: Full-Scale Acceleration

Data Table:

<table>
<thead>
<tr>
<th>Actuator Status</th>
<th>Sensor Mounting Angle (°)</th>
<th>Input Acceleration (g)</th>
<th>Measured Acceleration (g)</th>
<th>Sensor Binary Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 LSB Bit-3 Bit-2 Bit-1 Bit-0 Bit-3 Bit-2 Bit-1 Bit-0</td>
<td>90</td>
<td>1</td>
<td>0.9918 ≤ g < 1.0026</td>
<td>(01010101)</td>
</tr>
<tr>
<td>65</td>
<td>0.963</td>
<td>0.9056 ≤ g < 0.9164</td>
<td>(01010001)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0.68</td>
<td>0.6792 ≤ g < 0.6900</td>
<td>(00111111)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.44</td>
<td>0.4313 ≤ g < 0.4420</td>
<td>(00101000)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.259</td>
<td>0.2587 ≤ g < 0.2695</td>
<td>(00010111)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.107</td>
<td>0 ≤ g < 0.107</td>
<td>(00000000)</td>
<td></td>
</tr>
</tbody>
</table>
Neural Network (Bio-Inspired Thing)

Hodgkin and Huxley model

\[I = C_m \frac{dV_m}{dt} + \bar{g}_K n^4 (V_m - V_K) + \bar{g}_N a m^3 h (V_m - V_Na) + \bar{g}_l (V_m - V_l) \]

\[\frac{dn}{dt} = -\nu(t) + \theta(t) + I(t) + w \sigma(y) \]

\[\frac{dh}{dt} = \alpha_h (V_m)(1 - h) - \beta_h (V_m) h \]

CTRNN

Typical machine learning ignores the time temporal effect

\[y(t) = I + w \sigma \]

The Nobel Prize 1963
How ML using MEMS?

MEMS naturally solve the neuron equation

\[\tau \dot{x}(t) = -x(t) + J(\nu_c + \nu(t)) + \beta_g g_G(x) \]

You need a DSP to simulate

\[\tau y(t) = -y(t) + \theta + I(t) + w \sigma(y) \]

The MEMS response, for example through gematric nonlinearities, can be engineered to match the response of a continuous recurrent neuron.
MEMS CTRNN

A network of coupled MEMS can mechanically perform machine learning calculation.

Why CTRNN?
Wrist trajectories

Our solution

A network of mechanically coupled MEMS can be designed to mechanically perform the calculation of a typical machine learning.
How to achieve coupling?

1. Full mechanical coupling (Only continuous)

So far we did it only for three MEMS
2-Through parallel fingers

Shared electrode (connected left or separated right) will simulate the weights of a ML
3- Though op-amp

Op-amp gains will simulate the weights of a ML
Signal classification

Problem: distinguish between two input waveforms; rectangular waveform and triangular waveform.*

One way to do it using MEMS switches

Works, but requires more neurons

And there is dithering
Other way (utilizing memory)

CTRNN neuron equation

\[
y(t) = -y(t) + \theta + I(t) + \omega |y|
\]

CTRNN neuron

\[
\tau \dot{x}(t) = -x(t) + T[V_0] + a(t) + wg(x)
\]
Application (Real hardware)
1-Signal classification

![Diagram of signal classification and mechanical components]

Figure 5: A SEM view of the fabricated device and details of the device structure.
2-Activity recognition (sit-to-stand detection)
Application (simulation):
3-Activity recognition (multiple events)

Acceleration profiles for different activities

Our MEMS solution matches state of art ML while consuming order of magnitudes less power

Ref
Active categorical perception problem. The agent (controlled unit), modeled as a circular object, is equipped with 7 proximity sensors, depicted as dashed lines, and is expected to categorize a falling object and act according to its shape. The agent is actuated via two motors attached to each side. (b) The recurrent neural network map used in this study, showing 14 total MEMS neurons: 7 input neurons, 5 computational recurrent neurons, and 2 output neurons.
Copyright Notice

This multimedia file is copyright © 2022 by tinyML Foundation. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML Foundation.

www.tinyml.org
Copyright Notice

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org