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tinyML Summit 2022
Miniature dreams can come true…

March 28-30, 2022
Hyatt Regency San Francisco Airport

https://www.tinyml.org/event/summit-2022/

The Best Product of the Year and the Best Innovation of the Year awards are open for 
nominations between November 15 and February 28. 

tinyML Research Symposium 2022
March 28, 2022

https://www.tinyml.org/event/research-symposium-2022

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/summit-2022/
https://www.tinyml.org/event/research-symposium-2022
mailto:sponsorships@tinyML.org


tinyML Trailblazers Series 
Success Stories with Joel Rubino 
(CEO & Co-founder of Cartesiam) 

LIVE ONLINE February 2nd, 2022 at 8 am PST

Register now! 



Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

8k members in
42 Groups in 33 Countries

2.6k members 
&

4.6k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

5.9k subscribers, 347 videos with 174k views 

http://www.youtube.com/tinyML


Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
February 8

Stefano Cadario, 
Director Product Management,
IoT Group, Arm

Get Ahead of the Curve: Develop Software in 

the Cloud for the Ethos-U55 and Cortex-M55 

Processors

Webcast start time is 8:00 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org


Reminders

youtube.com/tinyml

Slides & Videos will be posted tomorrow

tinyml.org/forums

Please use the Q&A window for your questions



Dr. Muhammad Shafique
M. Shafique is an Associate Professor in the Division of Engineering,

New York University (NYU) Abu Dhabi, UAE, and Global Network

Associate Professor in the Tandon School of Engineering, NYU-NY,

USA. He is also a CoPI / Investigator in multiple Centers, i.e., Center of

AI and Robotics, Center of Quantum Computing, Center of Cyber

Security, and Center for InTeractIng urban nEtworkS.

He received his Ph.D. in Computer Science from Karlsruhe Institute of

Technology (KIT), Germany in 2011. From Sep.2016 to Aug.2020, he

was a Full Professor of Computer Architecture and Robust Energy-

Efficient Technologies (CARE-Tech.) at the Institute of Computer

Engineering, Vienna University of Technology (TU Wien).

Dr. Shafique has received ACM SIGDA Outstanding New Faculty

Award, AI-2000 Most Influential Scholar Award in 2020, ASPIRE

Award for Research Excellence, and multiple best paper awards and

nominations at flagship conferences.
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Who Ruled the World!

Age of Power

Man-Power (#), Skills, Strength, Courage, etc.

Age of Resources and Industry

Fuel, Industrial Tech., Economic Politics, etc.

Age of Data and AI

Data is the New Fuel

Innovation in Technology is the New Politics

Nation-wide Race for Dominance in AI
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Outline

❑What are TinyML and EdgeAI?

❑Applications

❑Cross-Layer Design Flow

❑Future Research Directions
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TinyML and EdgeAI: Unique Features?

Enabling on-device data analytics, predictions, & intelligence at 
extremely low power

❑Fastest-growing field of machine learning

❑Combination of embedded systems, algorithms and hardware

❑On-device ML under limited resources

❑Stringent design constraints

❑Always-on use-cases

❑Battery-operated devices

❑Scalable to trillions of sensors
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TinyML and EdgeAI

❑Fundamentally different from machine learning in the cloud

Extreme 
Constraints

Tight 
Constraints

S21, iPhone 13, 
NVIDIA Jetson

Edge/Mobile AI

2 - 12 GB

16 - 512 GB

Embedded processing
Continual Learning

TinyML

STM32F769 
Microcontroller

~512 KB

~2 MB

In-/near-sensor 
processing

Cloud AI

Memory

Storage

Hardware

Applications

NVIDIA DGX A100

1 TB System Memory + 
320 GB GPU Memory

>15 TB

Model Training, 
Big Data Analytics
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Smart Cyber Physical Systems & Internet-of-Things

Smart Grids
http://solutions.3m.com/wps/portal/3M/en_EU/Sma

rtGrid/EU-Smart-Grid/

Smart Transport Systems
https://www.automotiveworld.com/analysis/automotive-

cyber-physical-systems-next-computing-revolution/

Smart Traffic Control
https://www.emaze.com/@ACIOWOWR/IMSA-Slide-Show

Industry 4.0: 

Smart Industrial Automation
https://vimeo.com/145877805

Smart Houses
https://www.linkedin.com/pulse/smart-homes-

private-secure-future-intelligent-home-tripti-jha

Smart Robots
http://alpha-smart.com/alphaboten

Smart Health Care

Applications

Smart Automobiles
http://www.it5g.com/latest-software-enhancements-in-the-auto-industry/

AI / ML is inevitable, we have to 

efficiently infer knowledge from the big 

data, and derive predictions

http://solutions.3m.com/wps/portal/3M/en_EU/SmartGrid/EU-Smart-Grid/
https://www.automotiveworld.com/analysis/automotive-cyber-physical-systems-next-computing-revolution/
https://www.emaze.com/@ACIOWOWR/IMSA-Slide-Show
https://vimeo.com/145877805
https://www.linkedin.com/pulse/smart-homes-private-secure-future-intelligent-home-tripti-jha
http://alpha-smart.com/alphaboten
http://www.it5g.com/latest-software-enhancements-in-the-auto-industry/
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Smart CPS & IoT => The Robustness Challenge!

Failure of F-22 

Raptor (2007)
http://www.dailytech.com/Lockheeds

+F22+Raptor+Gets+Zapped+by+Inte

rnational+Date+Line/article6225.htm

Toronto, on the 

evening of August 14, 

2003

Northeast blackout of 2003

Satellite imagery of the Northeastern 

United-States taken before and 

during the blackout

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

Norwegian C-

130 crash (2012)
https://en.wikipedia.org/wiki/2012_

Norwegian_C-130_crash

Hacking Jeep Cherokee 4x4 (2015)

Sent the instructions through Entertainment systems

• Control the steering 

• Control the braking system
https://www.ophtek.com/4-real-

life-examples-iot-hacked/

Smart Healthcare
(Energy and time constraints)

… should consider

❑ Robustness

❑ Reliability

❑ Security

❑ Performance

❑ Throughput

❑ Latency

❑ Others

❑ Adaptability

❑ Safety

❑ Privacy

❑ Interoperability

http://www.dailytech.com/Lockheeds+F22+Raptor+Gets+Zapped+by+International+Date+Line/article6225.htm
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://www.ophtek.com/4-real-life-examples-iot-hacked/


Complexity: Exponential Growth in Model Sizes!

Source: Eric Chung, "Accelerating Microsoft’s AI Ambitions", Microsoft, Azure AI and Advanced Architectures Group, 2019.

Megatron is a 8.3 billion parameter transformer 

language model with trained on 512 V100 GPUs, 

making it the largest transformer model ever!

90,000x 

ResNet50

Source: https://www.microsoft.com/en-us/research/blog/a-microsoft-custom-data-type-for-efficient-inference/.

Challenging Question

How to process huge amount of data in robust & energy-

efficient way, while considering tinyML / EdgeAI constraints?

Human Brain => 20W

Efficiency Gap => 1,000x → 100,000x!!!
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Robustness for Machine Learning: News Feed

https://www.technologyreview.com/f/613254/hackers-trick-teslas-

autopilot-into-veering-towards-oncoming-traffic/

Hackers trick a Tesla into 
veering into the wrong lane

https://www.youtube.com/w

atch?v=a7L51u23YoM

Self-driving car crash in 
Arizona: Waymo van involved 

in Chandler collision

https://www.technologyreview.com/f/613254/hackers-trick-teslas-autopilot-into-veering-towards-oncoming-traffic/
https://www.youtube.com/watch?v=a7L51u23YoM
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Adversarial Attacks on Tesla Autopilot 
by Tencent Keen Security Lab

Digital Adversarial Examples

❑ Insert the noise into the DNN input

Physical World Adversarial Examples

❑ Place the small stickers on the ground 

+ =

Rainy Score: 

0.0113
Adversarial 

Noise

Rainy score: 

0.8204

Tencent Keen Security Lab, “Experimental Security Research of Tesla Autopilot” Technical Report 2019-03

Black-Box Attack  
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Overview of Challenges for EdgeAI & tinyML
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Cross-Layer Design Flow

❑Frameworks enable seamless integration of algorithms and 

optimizations at all layers, developed by the community.

❑ Design and optimize ML models for ultra-low power devices

❑Hardware accelerators

❑ Specialized hardware for accelerating vector/matrix multiplication

❑DNN Optimization

❑ Neural Architecture Search (NAS), Pruning and Quantization



42

Embedded AI @ eBrain Lab:
A Multi-Dimensional Research Challenge

CPS

Software 
(GPUs)

Accelerators + 
Approximate 
Computing

Deep Learning 
Architectures

Neuromorphic 
Architectures

...
...

...

...

...

...

Accurate SAD 
Accelerators

...

...

...

...

...

...

Approximate SAD 
Accel. Variant1 

...

...

...
...

...

...

...

...

Approximate SAD 
Accel. VariantN-1 

...

...

...

...

...

...

Approximate SAD 
Accel. VariantN 

SAD Accelerator Array Output and 

Monitoring

(MV, SAD, etc.)

AGU

On-Chip Memory

Ref. 
Frame
Search 
Window

Current 
Frame 
CTU

Power-Gating Control Approximate Variant Selection Unit

User 

Constraints
CPU Main Memory

System Bus

CPU 
executes 
the ME 

algorithm 
andHEVC

Memory stores 
the video frames

Source: El-Harouni, Shafique, et al. @ DATE’17

Accurate Approximate

Approximate Approximate

FC 
layer

C1

Image 01

Image 01
Image 01

Image 01

Image 01

Image 01

Image 01
Image 01
Image 01
Image 01

Image 01
Image 01

Image 01 Image 01

Image 01 Image 01 Image 01

Image 01Image 01 Image 01

Image 01Image 01Image 01

Image 01Image 01Image 01

Image 01Image 01Image 01

Image 01Image 01Image 01

Image 01Image 01Image 01

1

2

3

4

5

6

7

8

9

0

C2P1 P2 FC

Input 
Image

First Convolution
C1@6 filters

Pooling
P1@Average

Second Convolution
C2@12 filters

Pooling
P2@AverageImage 01

In-Memory Computing

Source: Hanif, Manglik, Shafique @ IEEE Access’20

TinyML & EdgeAI

Source: M. M. Shulaker et al., Nature 547, 74 (2017) 
and R. Mark Wilson; Physics Today 70, 14-16 (2017)

Hardware-Aware 
Neural Architecture Search 
(NAS) + Optimization

Post-CMOS 
Technologies

Search 

Space reward

Candidate 
Architecture 

Search 

Strategy

Performance 

Evaluation 

Strategy

NAS

Source: ARDUINO

Source: Intel, Loihi
Chip

Source: NVIDIA Jetson Nano 
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ML Security Research @ eBrain Lab

Sensors/ Actuators
Network Layer

(Communication)

Control 

Unit

Computations

(Decision Making)

Information

Actions

Information

Actions

Information

Decision

Input Data Decision Making Decision Evaluation Output Decision

Machine Learning-based Decision Making in CPS

Cyber-Physical System

Side Channel Attacks

1 0 1 1 0

Processing
Computations

M
e
m

o
ry

Power Supply

Hardware Trojans Convolutio

n

Max pooling Fully Connected

Conv2 Conv3 Conv4 Conv5

C
1

-1

C
1

-2

C
2

-1

C
2

-2

C
3

-1

C
3

-2

C
3

-3

C
4

-1

C
4

-2

C
4

-3

C
5

-1

C
5

-2

C
5

-3

Conv1 VGGNet

Neural Trojans Backdoor Attacks

Speed Limit 

(60km/h)

Adversarial Attacks

Stop Sign

+

Speed Limit (60km/h)

Turn Right Turn Left

+

Model Stealing Attacks Dataset Stealing Attack

Privacy Attacks on Machine Learning

f(x)

x
f’(x)

ML Services

Extraction 

Adversary

Data 

Owner

• M. A. Hanif, F. Khalid, R. V. W. 

Putra, S. Rehman, M. Shafique, 

“Robust Machine Learning 

Systems: Reliability and Security 

for Deep Neural Networks”, in 

IOLTS-2018, Platja d'Aro, Spain, 

pp. 257 - 260. 

• F. Kriebel, S. Rehman, M. A. 

Hanif, F. Khalid, M. Shafique, 

“Robustness for Smart Cyber-

Physical Systems and Internet-of-

Things: From Adaptive 

Robustness Methods to Reliability 

and Security for Machine 

Learning”, ISVLSI-2018, Hong 

Kong, China, pp. 581-586.
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Our Cross-Layer TinyML and Edge AI Framework: 
An Overview

DNN Training in the 
Independent 3P Server

Post-Training Evaluation 
for Possible Backdoors

…

Data 
Generation

Encryption

Validation Data

Data for 
Evaluation

DNN Testing

Training Data Training

Inference Energy-Efficient 
& Secure 

TinyML/EdgeAIInference 
Data

Formal Method Analysis 
(Math. Model, 

SAT Solver, etc.)

Side Channel 
Analysis-Based 

Monitoring
Obfuscation

Hardware Testing

Trained 
DNN Design Constraints 

(Latency, Throughput, 
Power, Energy, etc.) 

Model 
Compression

(Pruning, 
Quantization)

Compressed 
DNN

Performance- & 
Energy-Efficient 
TinyML/EdgeAI 
System Design

DRAM Energy Optim.
(DRAM Access Reduction, 

Low-Latency DRAM, 
Approximate DRAM)

Buffer Energy Optim.
(Buffer Access Reduction, 

Low-Latency Buffer, 
Approximate Buffer)

Compute Energy Optim.
(Data Reuse, Compute 

Parallelism, Approx. Units)

Run-time Power 
Management
(Clock Gating, 
Power Gating, 

DVFS)

Efficient 
TinyML/
EdgeAI

Test 
Vectors

HW-
Aware 

NAS

1

2

4

5A Cross-Layer Framework 
for Energy-Efficient and 

Secure TinyML and EdgeAI

Training Data 
for 3P

Validation

Comparison of the 
Trained DNNs

Permanent Fault 
Mitigation 
Circuitry

Reliability-
Aware 

Synthesis

Hardware

Adaptive Voltage & 
Frequency Control

Online Error 
Monitoring

Post-Fabrication 
Testing to Identify 
Permanent Faults

Fault-Aware 
DNN Mapping

(Process Variation-
Aware, Aging-
Aware, etc.)

Error Resilience Evaluation of the 
DNN

(Approximation Error Analysis, etc.)

Resilient 
TinyML/
EdgeAI

Soft Error 
Mitigation 

(Range Restriction)
3

Fault-Tolerant / Resilient
TinyML/EdgeAI System 

Design

Aging Mitigation 
(Timing Error 

Mitigation Circuitry)

Secure TinyML/EdgeAI HW Design

Encryption

Noise Filtering

Quantization

Performance & 
Energy-Efficiency Domain

Reliability Domain 

Security Domain

HW-Level Technique

Run-Time Technique

SW-Level Technique

Permanent 
Fault 

Mitigation 
Circuitry

Reliability
-Aware 

Synthesis

Error Resilience 
Evaluation of the DNN
(Approximation Error 

Analysis, etc.)

Resilient 
TinyML/
EdgeAI

Soft Error 
Mitigation 

(Range 
Restriction)

Fault-Tolerant / Resilient
TinyML/EdgeAI System 

Design

Aging Mitigation 
(Timing Error 

Mitigation Circuitry)

Class-Blind Pruning (IJCNN’19)

190x – 15x memory savings 

for different DNNs 

@ 0.1 Accuracy Loss

Curable 

Approximations 

(DAC’19)

1.5x Energy Efficiency 

@ NO Accuracy Loss

DRAM Access Energy Savings 

(TVLSI’21)

~45% for AlexNet, VGG-16, 

MobileNet, and SqueezeNet
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Structured Pruning Methodology

❑ Step 1: Compute the sensitivity of 

the layers of the given DNN to 

pruning using a user-defined cost 

function

❑ Step 2: Remove 𝒙 percent 

filters/neurons from the least 

sensitive layer

❑ Step 3: Fine-tune the network for 𝑦
number of epochs

❑ Step 4: Compare the accuracy with 

the defined accuracy constraint

❑ Step 5: Continue pruning if the 

accuracy is greater than the defined 

constraint

For Each Layer 

Compute the saliency of all the 
filters/neurons using L1-norm

Remove x percent of least salient 
filters/neurons

Compute the accuracy and 
compression ratio of the network 

and register in θ

Create a temporary copy of the 
DNN

Based on the user-defined cost 
function and the registered values in 
θ, select the layer that offers least cost 

and prepare the pruned DNN

Fine-tune the network for y number of 
epochs 

Compute the accuracy of the network 
using validation dataset

Select the DNN from 
the previous iterations 

as the output 

If validation 
accuracy > AC

Empty θ and 
update the 

pre-trained DNN

Yes

No

Validation 
Dataset

User-defined 
Accuracy 

Constraint (AC)

Pre-trained DNN 
Model

Train 
Dataset

User-defined 
Cost Function (C)
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Results using LeNet-5 trained with MNIST Dataset

Self-healing configurationsNon-Self-healing configurations

3. Hardware Approximation

1. Structured Pruning 2. Quantization
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Results using LeNet-5 trained with Cifar10 Dataset

1. Structured Pruning 2. Quantization

Self-healing configurationsNon-Self-healing configurations

3. Hardware Approximation
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Results using VGG11 trained with Cifar10 Dataset
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Memory Optimizations

Energy-Efficient 

Memory Accesses for 

DNN Accelerators 

(IEEE TVLSI’21)

Generic DRAM Mapping for Energy-Efficient DNNs (DAC’20)

1

2

12% - 46% DRAM access energy savings for 

AlexNet, VGG-16, MobileNet, and SqueezeNet

Compared to other mapping policies and reuse schedules,

• up to 96% EDP improvements in DDR3

• up to 94% EDP improvements in SALP architectures



NASCaps: NAS 

Framework for 

CapsNet

(ICCAD’20)

51

Capsule Networks Research

QCaps: 

Quantization

Framework 

(DAC’20)

1

FasTrCaps: 

Fast Training

(IJCNN’20)

2

3

RobCaps: Security 

& Robustness

(under Review)

4

6.2x memory reduction

0.15% accuracy loss

30% fast training with 

0.1% accuracy gain

Compared to DeepCaps

20% accuracy gain

52% energy saving

30% reduced memory

64% lower latency



Approximate

CapsNet Design 

(DATE’20)
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Capsule Networks Research

5

DSE of the PE Array for CapsNet 

Accelerators (IEEE TVLSI’21)6

DESCNet: 

Scratchpad

Memory Design for 

CapsNet Hardware 

(IEEE TCAD’20)

7

Layer-wise approximate 

multiplier selection

28% energy reduction
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79% energy reduction
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Neuromorphic Computing using Intel’s Loihi

n eu ron  

in t eg r a t es 
d en d r i t i c  cu r ren t
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Vt h
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sp i kes t r av e l  t o  
t h e  p ost  sy n ap t ic  

n e u ron
t i m e

p ix e l  i n t en si t y  se t s 

o f  i n p u t  n eu ron s

t i m e

SNN Mapping over 

Intel’s Loihi 

Processor 

(IJCNN’20)

1

Autonomous

Driving

DVS-Based Car vs. 

Background Classification 

on Intel’s Loihi (IJCNN’21)

2

Smart Farming
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Spiking Neural Networks Research

Resilient and Energy-

Efficient SNN Inference 

(DAC’21)
SNN with Unsupervised 

Continual Learning  (DAC’21)
Quantization 

for SNNs 

(IJCNN’21)

2
3

4

Energy-Aware 

Optimizations and 

Learning Methods 

(IEEE TCAD’20)

1

Compared to state-of-the-art model,

• 7.5x memory saving

• 3.5x energy improvement in training

• 1.8x energy improvement in inference

Compared to baseline model,

40% DRAM access energy saving 

with < 1% accuracy loss 

Compared to state-of-the-art model,

• 51% energy saving in training

• 37% energy saving in inference

• 21% accuracy gain for the most 

recently learned task

• 8% accuracy gain for the previously 

learned tasks

Compared to baseline model,

• 4x memory saving with < 1% 

accuracy loss for unsupervised SNN

• 2x memory saving with < 2% 

accuracy loss for supervised SNN



Fault-Injection 

Attacks 

(IJCNN’20)
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Security for SNNs & Neuromorphic Computing

Robust SNN 

Design against 

Adversarial 

Attacks 

(DATE’21) 1

Security for 

SNNs

(IJCNN’20)

   (Noise  udge )
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 T  2    h      T  2    h 1   CNN  T       h 2 2   T       h 1   

Same clean accuracy 

than CNN

75% higher accuracy for 

large perturbations

Adversarial 

Perturbations for 

Dynamic Vision 

Sensors (IROS’21, 

IJCNN’21)

2

4

3



Energy-Efficient IoT-Healthcare and AI

Exploration of Deep Neural Networks Architectures User Requirements

DNN Quality Metrics (Classification 

Accuracy, Precision, Recall, F1-score, etc.)

Output Classes

Hardware Constraints (MB, FLOPs)

Wearables/

Mobile Phone
2MB, 0.1 TFLOPs

Desktop CPU

Server/GPU

16 MB, 2 TFLOPs

512 MB, 20 TFLOPs

Generate Neural Networks

Genetic Algorithms

Training & Testing of 

selected networks
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EdgeAI for Healthcare: Moore4Medical EU Project

Next Generation Ultrasound

❑ Data Acquisition

❑ 3D Reconstruction

❑ Edge Processing

❑ AI algorithms for detecting 

fetus’ anatomical features

❑ Hardware accelerator for high 

throughput feature extraction

❑ Closed-loop system for 

real-time user feedbackSrc: Google Images

❑ Investigating DL architectures and statistical ML techniques for 

classification, segmentation, and anatomical feature extraction 

❑ Evaluating requirements of proposed algorithms to develop 

energy-efficient hardware accelerators for edge processing

❑ Develop FPGA prototype to demonstrate the efficacy of the 

accelerator and deployability of the HW-SW system
Moore4Medical
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Future Research Directions

❑New computing paradigms such as near-/in-memory computing 

and approximate computing

❑ It is not all about deep learning. Conventional machine learning 

models can offer better performance in some scenarios.

❑Optimization frameworks for all types of systems, as the 

selection is limited in some scenarios due to other constraints, 

e.g., cost.

❑Novel techniques for training and optimizing machine learning 

models

❑ Interpretability of models to ensure robustness
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Summary

❑Artificial Intelligence has proliferated almost everywhere, that’s 

for a good reason! => the big data challenge!

❑ Cloud, Fog, Edge, …, In-Sensor / In-Situ

❑Required: High-Throughput, Energy-Efficient, & Robust Designs

❑Our System-Level Framework

❑ Optimizations across the Software & Hardware stacks

❑ Specialized hardware accelerators, dataflows, memory, 

self-healing approximations, hardware-aware NAS, …

❑ Selective Tile Processing for energy-efficient object detection

❑ Robustness: Analyzing security attacks and hardware-level faults.

A system level approach requires bridging the gap between the 
AI/ML community & System designers (HW + SW)
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Lifelong Learning in Artificial Neural Networks

Data and image source: 

“Lifelong Learning in Artificial 

Neural Networks” in 

Communications of the ACM

“In   few  e rs, much of wh   we 
consider AI  od   won’   e considered AI 

wi hou  lifelong le rning”
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My Research Team and Collaborators

Post-Docs and PhDs

Key Collaborators

MS/BS Students

Previous Students
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