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LLMs on Arm CPUs

LLMs have transformed the way we think about language understanding and generation

Facilitating their efficient execution on Arm CPUs will expand their reach to billions of 
Arm devices

LLMs are often BW bound and have a large weight memory footprint – Arm CPUs can 
achieve competitive performance against other IP

Arm CPUs are pervasive, providing portability and flexibility – SW compression schemes, 
etc.

Question: What is the potential performance of LLMs on Arm CPUs deployed in
smartphones and edge devices?
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Key results – LLMs on Arm CPUs

Focusing on Phi2 2.7B 4b quantized (Q4) model as a benchmark

State-of-the-art C/C++ runtime (e.g., Llama.cpp (GGML)) demonstrates performance on 
existing Arm platforms but fails to demonstrate the true potential of Arm CPUs

Developed highly optimized GEMV and GEMM kernels for 4b quantized LLMs

End-to-end Phi2 2.7B 4bit Speedup on Arm Cortex series CPUs (Cortex-A/Cortex-X):

Time-to-first-token: 2.3x speedup for 4 threads over GGML

Text generations afterward: 1.45x speedup for 4 threads over GGML
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Microsoft’s 2.7B parameter Phi 2 LLM
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Microsoft

A stack of self-attention transformer layers

32 layers for Phi2 2.7B parameters model
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How does a language model like Phi2 work?
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Each round through the network generates 
a new token. 

The new token is fed into the network's 
next round. 

The "state" gradually builds up and is 
carried from left to right in the figure 
(through LLM's Key Value cache).

A typical LLM inference involves going 
through the network multiple times and 
generating many tokens.

Input prompt
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Prompt Processing (generate first token): GEMM

Text Generation afterwards:                        GEMV
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Arm CPUs for benchmarking

Using Arm Cortex series CPUs

Readily available, reliable benchmarking platform.

Using 4-bit “q4_0” quantization scheme - simple, high performance.

There are other quantization schemes; the optimizations that we perform for Q4_0 
should also extend to other schemes.
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GEMM/GEMV background

For typical operators in LLMs, weight matrix (B) is 
much larger than the input (A) and output (C). 

Compression of weight matrix is key to reducing 
memory and bandwidth consumption.

In GGML, a dot-product kernel computes a single 
result – it’s called at each point to populate the 
whole of C.

LLMs typically use block quantized scheme to 
store chunks of weight columns and activations

Output length (~4k)

B
at
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e

s

Input 
length 
(~4k)

Output activations
(C)

Weight 
matrix (B)

Input activations
(A)

Quantized block 
(eg 32 values)

Single activation row in

non-batched case
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Block Quantized Formats

Original

32xFP16 values

64 bytes

q4_0

1xFP16, 32xS4

18 bytes

Low 16 and high 16 weights

interleaved to facilitate processing

FP16 scale – approximately -1/8 
of largest original value

Weight format: chosen to 
optimize space and bandwidth

q8_0

32xS8, 1xFP16

34 bytes
FP16 scale – approximately -1/128 
of largest original value

Activation format: chosen 
to facilitate computation 
(int8 allows use of SDOT)

32 FP16 values
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Block processing steps – (original llama.cpp/GGML)

Expand low weights to 8b (AND, SUB)

Expand high weights to 8b (SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low part (DOT)

Multiply high part (DOT)

Convert LHS scale to FP32 (FCVT)

Convert RHS scale to FP32 (FCVT)

Combine scales (FMUL)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

“real work”

scalar/pseudo-scalar ops

(-) No reuse of activations –  
redundant loads
(-) No reuse of activations scale
(-) No use of vector instructions for 
weights scales
(-) Pseudo-scalar ops

Dot-product kernel in the 
baseline c/c++ runtime:

weight

input
output
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Scalar operations and overall poor MAC efficiency

12 operations, of which 2 are doing the 
“real” MAC work (17%)
• Plus 5 load ops (not shown)

50% (6/12) are scalar/pseudo-scalar 
(work on a vector that is later reduced)

A lot of compute instructions are not 
doing useful MAC work

MAC utilization efficiency: 17%

…

partial dot 
product 1

partial dot 
product 2

partial dot 
product n

Final dot product +<=
REDUCE

weightinput
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Transformed block layout

To avoid pseudo-scalar ops, need to arrange than each lane is working on unique result.

This means moving data into the relevant lane (transposing).

… … …

Optimized format

Baseline kernel –

Single weight 
column

Optimized kernel –

Multiple weight 
columns

(original format)

Original in-memory format

Optimized kernel –

Multiple weight 
columns

(optimized format)

weightweightweightinput input input

Output =>

Scale 
values

Weights 

Transposed

into 
columns

Output => Output =>
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Block processing steps – 4 simultaneous blocks

Expand low weights to 8b (4x AND, SUB)

Expand high weights to 8b (4x SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low parts (4x DOT)

Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

38 operations, computing 4 blocks => 9.5 operations per block

MAC utilization efficiency: 21% => 26% speedup over original code

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)

Convert RHS scales to FP32 (FCVT)

Combine scales (FMUL)

Still scalar, but amortized

Now doing useful 

vector work

Extra operations added!

(+) Reuse of activations –  
No redundant loads
(+) Reuse of activations scale
(+) Use of vector instructions for 
weights scales
(+) No pseudo-scalar ops
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Block processing steps – optimized memory format

Expand low weights to 8b (4x MUL, SHR)

Expand high weights to 8b (4x SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low parts (4x DOT)

Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

26 operations, computing 4 blocks => 6.5 operations per block 

MAC utilization efficiency: 31% => 85% speedup over original code

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)

Convert RHS scales to FP32 (FCVT)

Combine scales (FMUL)
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Optimized GEMM for prompt phase (time-to-first-token)

Uses the same optimizations as GEMV:
• Weights in blocks prearranged ready for processing.
• Apply the same to activations (as we now process multiple rows of activations).

Uses SMMLA instruction (doubles the MAC count of SDOT)
• Considers multiple inputs rows at a time, and generates multiple output rows

Reduced bandwidth consumption as each input is processed by 
several SMMLA instructions.

MAC utilization efficiency: 40%

SMMLA
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Phi2 2.7B Q4_0 for single inference case on Arm Cortex series CPUs

Prompt processing tokens/s (using GEMM) Text generation tokens/s (using GEMV)

2.3x speedup 1.45x speedup
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Conclusions

Arm CPUs are a suitable platform for LLM inference

We have other model and runtime optimizations that improve the runtime even further 
(outside the scope of this talk)

Arm blog: https://community.arm.com/arm-community-blogs/b/ai-and-ml-
blog/posts/generative-ai-on-mobile-on-arm-cpu

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/generative-ai-on-mobile-on-arm-cpu
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/generative-ai-on-mobile-on-arm-cpu
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