Optimizing Large Language Model (LLM) Inference for Arm CPUs

Dibakar Gope
03/27/2024
LLMs on Arm CPUs

- LLMs have transformed the way we think about language understanding and generation

- Facilitating their efficient execution on Arm CPUs will expand their reach to billions of Arm devices

- LLMs are often BW bound and have a large weight memory footprint – Arm CPUs can achieve competitive performance against other IP

- Arm CPUs are pervasive, providing portability and flexibility – SW compression schemes, etc.

- **Question:** What is the potential performance of LLMs on Arm CPUs deployed in smartphones and edge devices?
Key results – LLMs on Arm CPUs

- Focusing on Phi2 2.7B 4b quantized (Q4) model as a benchmark

- State-of-the-art C/C++ runtime (e.g., Llama.cpp (GGML)) demonstrates performance on existing Arm platforms but fails to demonstrate the true potential of Arm CPUs

- Developed highly optimized GEMV and GEMM kernels for 4b quantized LLMs

- End-to-end Phi2 2.7B 4bit Speedup on Arm Cortex series CPUs (Cortex-A/Cortex-X):
 - Time-to-first-token: 2.3x speedup for 4 threads over GGML
 - Text generations afterward: 1.45x speedup for 4 threads over GGML
Microsoft’s 2.7B parameter Phi 2 LLM

- Phi2 is a well-known open-source LLM released by Microsoft
- A stack of self-attention transformer layers
- 32 layers for Phi2 2.7B parameters model
How does a language model like Phi2 work?

Each round through the network generates a new token.

The new token is fed into the network's next round.

The "state" gradually builds up and is carried from left to right in the figure (through LLM's Key Value cache).

A typical LLM inference involves going through the network multiple times and generating many tokens.
What are three popular chess openings?

There are...

After 1st round: What are three popular chess openings?
After 2nd round: What are three popular chess openings? There
...
After Nth round: What are three popular chess openings? There are ...
Prompt Processing (generate first token): GEMM

Text Generation afterwards: GEMV
Arm CPUs for benchmarking

- Using Arm Cortex series CPUs

- Readily available, reliable benchmarking platform.

- Using 4-bit “q4_0” quantization scheme - simple, high performance.

- There are other quantization schemes; the optimizations that we perform for Q4_0 should also extend to other schemes.
GEMM/GEMV background

- For typical operators in LLMs, weight matrix (B) is much larger than the input (A) and output (C).

- Compression of weight matrix is key to reducing memory and bandwidth consumption.

- In GGML, a dot-product kernel computes a single result – it’s called at each point to populate the whole of C.

- LLMs typically use **block quantized scheme** to store chunks of weight columns and activations.
Block Quantized Formats

Original
32xFP16 values
64 bytes

$q_{4.0}$
1xFP16, 32xS4
18 bytes

$q_{8.0}$
32xS8, 1xFP16
34 bytes

32 FP16 values

Low 16 and high 16 weights interleaved to facilitate processing

FP16 scale – approximately $-1/8$ of largest original value

Weight format: chosen to optimize space and bandwidth

Activation format: chosen to facilitate computation (int8 allows use of SDOT)

FP16 scale – approximately $-1/128$ of largest original value
Block processing steps – (original llama.cpp/GGML)

- Expand low weights to 8b (AND, SUB)
- Expand high weights to 8b (SHR, SUB)
- Initialize integer accumulator (MOV)
- Multiply low part (DOT)
- Multiply high part (DOT)
- Convert LHS scale to FP32 (FCVT)
- Convert RHS scale to FP32 (FCVT)
- Combine scales (FMUL)
- Convert integer sum to FP32 (SCVTF)
- Scale + Accumulate (FMLA)

(−) No reuse of activations – redundant loads
(−) No reuse of activations scale
(−) No use of vector instructions for weights scales
(−) Pseudo-scalar ops

"real work"

scalar/pseudo-scalar ops

Dot-product kernel in the baseline c/c++ runtime:
Scalar operations and overall poor MAC efficiency

- 12 operations, of which 2 are doing the “real” MAC work (17%)
 - Plus 5 load ops (not shown)
- 50% (6/12) are scalar/pseudo-scalar (work on a vector that is later reduced)
- A lot of compute instructions are not doing useful MAC work
- MAC utilization efficiency: 17%
Transformed block layout

To avoid pseudo-scalar ops, need to arrange than each lane is working on unique result.
This means moving data into the relevant lane (transposing).
Block processing steps – 4 simultaneous blocks

- Transpose weights into columns (8x ZIP)
- Expand low weights to 8b (4x AND, SUB)
- Expand high weights to 8b (4x SHR, SUB)
- Initialize integer accumulator (MOV)
- Multiply low parts (4x DOT)
- Multiply high parts (4x DOT)
- Convert LHS scale to FP32 (FCVT)
- Convert RHS scales to FP32 (FCVT)
- Combine scales (FMUL)
- Convert integer sum to FP32 (SCVTF)
- Scale + Accumulate (FMLA)

- 38 operations, computing 4 blocks => 9.5 operations per block
- MAC utilization efficiency: 21% => 26% speedup over original code
Block processing steps – optimized memory format

- Transpose weights into columns (8x ZIP)
- Expand low weights to 8b (4x MUL, SHR)
- Expand high weights to 8b (4x SHR, SUB)
- Initialize integer accumulator (MOV)
- Multiply low parts (4x DOT)
- Multiply high parts (4x DOT)
- Convert LHS scale to FP32 (FCVT)
- Convert RHS scales to FP32 (FCVT)
- Combine scales (FMUL)
- Convert integer sum to FP32 (SCVTF)
- Scale + Accumulate (FMLA)

+ 26 operations, computing 4 blocks => 6.5 operations per block
+ MAC utilization efficiency: 31% => 85% speedup over original code
Optimized GEMM for prompt phase (time-to-first-token)

+ Uses the same optimizations as GEMV:
 • Weights in blocks prearranged ready for processing.
 • Apply the same to activations (as we now process multiple rows of activations).

+ Uses **SMMLA instruction** (doubles the MAC count of SDOT)
 • Considers multiple inputs rows at a time, and generates multiple output rows

+ Reduced bandwidth consumption as each input is processed by several SMMLA instructions.

+ **MAC utilization efficiency**: 40%
Phi2 2.7B Q4_0 for single inference case on Arm Cortex series CPUs

Prompt processing tokens/s (using GEMM) Text generation tokens/s (using GEMV)

- 2.3x speedup
- 1.45x speedup
Conclusions

+ Arm CPUs are a suitable platform for LLM inference

+ We have other model and runtime optimizations that improve the runtime even further (outside the scope of this talk)

Thank You
Danke
Gracias
Grazie
谢谢
ありがとう
Asante
Merci
gamashapinda
धन्यवाद
Kiitos
شكرًا
ধন্যবাদ
तारा
ధన్యవాదములు