
© 2024 Arm

Dibakar Gope

03/27/2024

Optimizing Large Language
Model (LLM) Inference for
Arm CPUs

2 © 2024 Arm

LLMs on Arm CPUs

LLMs have transformed the way we think about language understanding and generation

Facilitating their efficient execution on Arm CPUs will expand their reach to billions of
Arm devices

LLMs are often BW bound and have a large weight memory footprint – Arm CPUs can
achieve competitive performance against other IP

Arm CPUs are pervasive, providing portability and flexibility – SW compression schemes,
etc.

Question: What is the potential performance of LLMs on Arm CPUs deployed in
smartphones and edge devices?

3 © 2024 Arm

Key results – LLMs on Arm CPUs

Focusing on Phi2 2.7B 4b quantized (Q4) model as a benchmark

State-of-the-art C/C++ runtime (e.g., Llama.cpp (GGML)) demonstrates performance on
existing Arm platforms but fails to demonstrate the true potential of Arm CPUs

Developed highly optimized GEMV and GEMM kernels for 4b quantized LLMs

End-to-end Phi2 2.7B 4bit Speedup on Arm Cortex series CPUs (Cortex-A/Cortex-X):

Time-to-first-token: 2.3x speedup for 4 threads over GGML

Text generations afterward: 1.45x speedup for 4 threads over GGML

4 © 2024 Arm

Microsoft’s 2.7B parameter Phi 2 LLM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

token j Phi2 is a well-known open-source LLM released by
Microsoft

A stack of self-attention transformer layers

32 layers for Phi2 2.7B parameters model

5 © 2024 Arm

How does a language model like Phi2 work?

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token 1

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token 2

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token 3

Layer 2

Layer 79

Layer 80

Post-proc

Each round through the network generates
a new token.

The new token is fed into the network's
next round.

The "state" gradually builds up and is
carried from left to right in the figure
(through LLM's Key Value cache).

A typical LLM inference involves going
through the network multiple times and
generating many tokens.

Input prompt

6 © 2024 Arm

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 2

Layer 2

Layer 79

Layer 80

Post-proc

What are three popular
chess openings?

There

There

are

are

After 1st round: What are three popular chess openings?

After 2nd round: What are three popular chess openings? There

…

After Nth round: What are three popular chess openings? There are …

LLM’s key value
cache:

Example

GEMM

GEMM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

What are three popular
chess openings?

7 © 2024 Arm

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention

Pre-proc

Layer 1

. . .

token j

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 1

Layer 2

Layer 79

Layer 80

Post-proc

Pre-proc

Layer 1

. . .

token j + 2

Layer 2

Layer 79

Layer 80

Post-proc

What are three popular
chess openings?

There

There

are

are

After 1st round: What are three popular chess openings?

After 2nd round: What are three popular chess openings? There

…

After Nth round: What are three popular chess openings? There are …

LLM’s key value
cache:

Example

GEMM

GEMM

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

Norm

Feed-Forward
Network

Norm

Multi-Head
Self Attention GEMV

GEMV

What are three popular
chess openings?

Prompt Processing (generate first token): GEMM

Text Generation afterwards: GEMV

8 © 2024 Arm

Arm CPUs for benchmarking

Using Arm Cortex series CPUs

Readily available, reliable benchmarking platform.

Using 4-bit “q4_0” quantization scheme - simple, high performance.

There are other quantization schemes; the optimizations that we perform for Q4_0
should also extend to other schemes.

9 © 2024 Arm

GEMM/GEMV background

For typical operators in LLMs, weight matrix (B) is
much larger than the input (A) and output (C).

Compression of weight matrix is key to reducing
memory and bandwidth consumption.

In GGML, a dot-product kernel computes a single
result – it’s called at each point to populate the
whole of C.

LLMs typically use block quantized scheme to
store chunks of weight columns and activations

Output length (~4k)

B
at

ch
e

s

Input
length
(~4k)

Output activations
(C)

Weight
matrix (B)

Input activations
(A)

Quantized block
(eg 32 values)

Single activation row in

non-batched case

10 © 2024 Arm

Block Quantized Formats

Original

32xFP16 values

64 bytes

q4_0

1xFP16, 32xS4

18 bytes

Low 16 and high 16 weights

interleaved to facilitate processing

FP16 scale – approximately -1/8
of largest original value

Weight format: chosen to
optimize space and bandwidth

q8_0

32xS8, 1xFP16

34 bytes
FP16 scale – approximately -1/128
of largest original value

Activation format: chosen
to facilitate computation
(int8 allows use of SDOT)

32 FP16 values

11 © 2024 Arm

Block processing steps – (original llama.cpp/GGML)

Expand low weights to 8b (AND, SUB)

Expand high weights to 8b (SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low part (DOT)

Multiply high part (DOT)

Convert LHS scale to FP32 (FCVT)

Convert RHS scale to FP32 (FCVT)

Combine scales (FMUL)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

“real work”

scalar/pseudo-scalar ops

(-) No reuse of activations –
redundant loads
(-) No reuse of activations scale
(-) No use of vector instructions for
weights scales
(-) Pseudo-scalar ops

Dot-product kernel in the
baseline c/c++ runtime:

weight

input
output

12 © 2024 Arm

Scalar operations and overall poor MAC efficiency

12 operations, of which 2 are doing the
“real” MAC work (17%)
• Plus 5 load ops (not shown)

50% (6/12) are scalar/pseudo-scalar
(work on a vector that is later reduced)

A lot of compute instructions are not
doing useful MAC work

MAC utilization efficiency: 17%

…

partial dot
product 1

partial dot
product 2

partial dot
product n

Final dot product +<=
REDUCE

weightinput

13 © 2024 Arm

Transformed block layout

To avoid pseudo-scalar ops, need to arrange than each lane is working on unique result.

This means moving data into the relevant lane (transposing).

… … …

Optimized format

Baseline kernel –

Single weight
column

Optimized kernel –

Multiple weight
columns

(original format)

Original in-memory format

Optimized kernel –

Multiple weight
columns

(optimized format)

weightweightweightinput input input

Output =>

Scale
values

Weights

Transposed

into
columns

Output => Output =>

14 © 2024 Arm

Block processing steps – 4 simultaneous blocks

Expand low weights to 8b (4x AND, SUB)

Expand high weights to 8b (4x SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low parts (4x DOT)

Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

38 operations, computing 4 blocks => 9.5 operations per block

MAC utilization efficiency: 21% => 26% speedup over original code

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)

Convert RHS scales to FP32 (FCVT)

Combine scales (FMUL)

Still scalar, but amortized

Now doing useful

vector work

Extra operations added!

(+) Reuse of activations –
No redundant loads
(+) Reuse of activations scale
(+) Use of vector instructions for
weights scales
(+) No pseudo-scalar ops

15 © 2024 Arm

Block processing steps – optimized memory format

Expand low weights to 8b (4x MUL, SHR)

Expand high weights to 8b (4x SHR, SUB)

Initialize integer accumulator (MOV)

Multiply low parts (4x DOT)

Multiply high parts (4x DOT)

Convert integer sum to FP32 (SCVTF)

Scale + Accumulate (FMLA)

26 operations, computing 4 blocks => 6.5 operations per block

MAC utilization efficiency: 31% => 85% speedup over original code

Transpose weights into columns (8x ZIP)

Convert LHS scale to FP32 (FCVT)

Convert RHS scales to FP32 (FCVT)

Combine scales (FMUL)

16 © 2024 Arm

Optimized GEMM for prompt phase (time-to-first-token)

Uses the same optimizations as GEMV:
• Weights in blocks prearranged ready for processing.
• Apply the same to activations (as we now process multiple rows of activations).

Uses SMMLA instruction (doubles the MAC count of SDOT)
• Considers multiple inputs rows at a time, and generates multiple output rows

Reduced bandwidth consumption as each input is processed by
several SMMLA instructions.

MAC utilization efficiency: 40%

SMMLA

17 © 2024 Arm

Phi2 2.7B Q4_0 for single inference case on Arm Cortex series CPUs

Prompt processing tokens/s (using GEMM) Text generation tokens/s (using GEMV)

2.3x speedup 1.45x speedup

18 © 2024 Arm

Conclusions

Arm CPUs are a suitable platform for LLM inference

We have other model and runtime optimizations that improve the runtime even further
(outside the scope of this talk)

Arm blog: https://community.arm.com/arm-community-blogs/b/ai-and-ml-
blog/posts/generative-ai-on-mobile-on-arm-cpu

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/generative-ai-on-mobile-on-arm-cpu
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/generative-ai-on-mobile-on-arm-cpu

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

	Slide 1: Optimizing Large Language Model (LLM) Inference for Arm CPUs
	Slide 2: LLMs on Arm CPUs
	Slide 3: Key results – LLMs on Arm CPUs
	Slide 4: Microsoft’s 2.7B parameter Phi 2 LLM
	Slide 5: How does a language model like Phi2 work?
	Slide 6
	Slide 7
	Slide 8: Arm CPUs for benchmarking
	Slide 9: GEMM/GEMV background
	Slide 10: Block Quantized Formats
	Slide 11: Block processing steps – (original llama.cpp/GGML)
	Slide 12: Scalar operations and overall poor MAC efficiency
	Slide 13: Transformed block layout
	Slide 14: Block processing steps – 4 simultaneous blocks
	Slide 15: Block processing steps – optimized memory format
	Slide 16: Optimized GEMM for prompt phase (time-to-first-token)
	Slide 17: Phi2 2.7B Q4_0 for single inference case on Arm Cortex series CPUs
	Slide 18: Conclusions
	Slide 19
	Slide 20

