Edge of Tomorrow: Unleashing the Power of Small LLMs for Generative AI at the Edge

Mallik Moturi, Jonathan Su, Stephen Osborne
Why do we run LLMs on edge devices?

- Natural Interfaces enable more applications to bridge the digital world to the real world.
- Conversational Speech, enabled by LLMs, for ex.:
 - Question/answer style chat for appliances & equipment
 - Customer service in big box retail, hospitality & commercial outlets
- Demand for Edge LLMs from our Customers is unprecedented
- Edge devices have many benefits
 - Addresses privacy concerns
 - Improves reliability
 - Lower latency
 - Lower cost
 - Lower energy use
 - More personalization
Large Language Models progress towards the Edge

1950s-2000s: Rule-based & symbolic systems

1990-2000s: Hidden Markov Models, n-gram models

2010s: Increased popularity of RNNs (1980s) & LSTMs (1995)

2010: “Attention is All You Need” paper

2017: GPT (Generative Pre-trained Transformer)

2018: Word2Vec

2022: Github Copilot

03/2023: Llama2 run on 4GB RPI4

07/2023: Meta Llama2 (7-70B) official release

11/2022: ChatGPT

End of 2023: TinyLlama (1B), Open project to train 1B parameter model

03/2023: OpenAI GPT-4 (1T params)

12/2023: Microsoft Phi-2 (2.7B)
What is the current state of the art?

- Llama2 and Phi-2 are foundation models with similar architectures.
 - A lot of companies & teams are working on similar models, mainly focussing on the ultra high end
- Seeing a bifurcation with some looking at the low compute regime
 - Qualcomm announced running at 20 tokens / second on a Snapdragon 8 Gen 3
 - Intel announced running at 40 tokens / second on a Xeon Max 9480
 - ARM blog showing 9.6 tokens / second on 3 Cortex-A700 CPUs

But, for real-time LLM applications we require ~ 2.5 words / second
>= 3.3 tokens / second
Large Language Model Architecture Compute Scaling

- The compute has 2 separate contributions
 - **Linear terms**: Matrix-vector multiplication with the W weight matrices (fixed cost per time step)
 - **Attention terms**: Matrix-vector multiplication with the K key matrix (scales linearly with the number of tokens)
- Example: Llama 2 7B
 - Linear term: 7B MACs per token (1 MAC per parameter)
 - Attention and linear terms are approximately equal cost after ~400 tokens (800 with fused masking)

Feed forward:
\[r = W_3(\text{silu}(W_1 z) \cdot W_2 z) \]

Self Attention:
\[
\begin{align*}
q_i &= W_q x_i \\
\kappa_i &= W_k x_i \\
v_i &= W_v x_i \\
y_i &= \text{softmax}(q_i K^T / \sqrt{d}) V \\
u &= W y
\end{align*}
\]
Summary of Different Optimization Approaches

- Many approaches, several have been used in other domains for a long time
- Some target the attention terms, some the linear terms, some both.
- Additional benefit from retraining & fine-tuning the model
Dynamic Sparsification & Retraining

- Switch which parts of the model are evaluated depending upon the input
- If model uses ReLUs then naturally get sparsity. If not, can still approximate small values as 0
- ~1.3x speedup without much loss in accuracy
- Many more optimizations to reduce amount of data
 - input sparsity, output sparsity, efficient data structures for memory management, row-column binding
- For edge applications we did supervised fine-tuning (SFT) on a custom dataset with modest resources (16 A100 GPUs)
- This allows additional optimizations, e.g.
 - Quantization-aware training
 - Sparsity-aware training
- Leading to 2x speedup
Comparison of the previous state-of-the-art GGML LLaMa-7B implementation (right) Vs. Syntiant optimized LLM (left), with the sparsified version outputting tokens at 2x the speed with the same accuracy.
Summary: Syntiant is Accelerating LLMs for the Edge

• Like the rest of the AI industry, demand for LLMs from our customers is huge
• Unlike the rest of the AI industry, we operate in compute constrained environments
 o Leveraging our expertise in sparse edge computation, we have developed a generalized sparsity approach that speeds up the State of the Art LLaMA-7B model by 1.3x – 2x
 o On a multi-threaded x86 machine, this means a rate of 10 tokens per second.
 o On edge-accelerated NPU’s supported by our Syntiant Inference SDK (Ambarella, Qualcomm, etc), we achieve up-to 30 tokens per second.

• These are the customer use-cases we are enabling:
 o Question/Answer style chat for home appliances, commercial equipment, etc.
 o Customer service in big box retail

• It is our belief that optimized LLMs running on Edge hardware will gain widespread adoption.
Path Forward: Shaping the Edge of Tomorrow with Small LLMs

Edge-Optimized LLMs: Tailoring small LLMs for more intuitive, natural interfaces for real-world to AI interactions

Next-Gen Silicon: Custom silicon compute & memory will boost efficiency and generative AI capabilities at the Edge

Economizing Memory: Innovation in memory usage, shrink both physical & cost footprint of Edge LLMs & generative AI

Generative AI Ubiquity: Forecasting a future where small, efficient LLMs are ubiquitous, transforming everyday technology with natural, generative interfaces.
Thank You

info@syntiant.com

@Syntiantcorp

www.syntiant.com

Syntiant Corp.