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The Need for Efficient AI Computing 
Move up the stack, co-design software and hardware

[source]

Software is important, the cost is highThe demand for AI computing is increasing fast
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https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129
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Previous Work
Deep Compression and EIE

Efficient Inference Engine 

[NIPS’15, ICLR’16, ISCA’16]

Top-5 most cited papers in 50 years of ISCA (1953-2023)

Deep Compression
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EfficientML Project
Bridge the supply and demand of AI computing

hanlab.mit.edu

Algorithm and system co-design for accelerated AI computing 

Goal: reduce latency, memory, low power/energy; increase throughput, accuracy, scalability. 
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Tiny Machine Learning with MCUNet
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[NeurIPS’20/21]

- TinyML: design light-weighted neural networks and deploy on cheap edge devices that has low 
power, computing, and memory. 


- Billions of IoT devices around the world based on microcontrollers, much cheaper ($1-2), much 
smaller, everywhere in our lives, but very memory-constraint. 


- MCUNet and TinyEngine paves the way for tiny machine learning on edge devices.



demo link

https://youtu.be/F4XKn0iDfxg?si=q6d3PYTh5oIVcGfM
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MIT HAN LABSong Han: Visual Language Models for Edge AI 2.0

On-Device Training Under 256KB Memory
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demo link

https://efficientml.ai
https://youtu.be/0pUFZYdoMY8?si=ICG3eNoovZ5261Ei
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Song Han: Visual Language Models for Edge AI 2.0

Edge AI 1.0

8

Medical image processing  Autonomous driving  Smart manufacturing Machine translation

Task-specific models

Train a specific model for each task
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Edge AI 1.0
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Medical image processing  Autonomous driving  Smart manufacturing Machine translation

Task-specific models

Train a specific model for each task

•  Need different model / data to train different tasks 
•  Lack of ‘negative samples’ for training 
•  Limited generalization; failure of corner cases

Task-specific models
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ChatBots Scientific Discovery

Software DevelopmentTransformer-based

Edge AI 2.0
General models with world knowledge
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Edge AI 2.0
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General models with world knowledge

Large 
Language 
Model

Visual Language Model (VLM)

World knowledge embedded on-device

Landmark recognition  Driving assistant Patient monitoring Smart manufacturing

•   One model - multiple tasks


•   Enhanced by LM’s world knowledge


•   Advanced reasoning capabilities


•   Instruction-following proficiency



Song Han: Slide Title

Song Han: Visual Language Models for Edge AI 2.0 12

Large 
Language 
Model

Visual Language Model (VLM)

World knowledge embedded

•   One model - multiple tasks


•   Enhanced by LM’s world knowledge


•   Advanced reasoning capabilities


•   Instruction-following proficiency

VLM Pre-training 
(VILA)

Model Compression 
(AWQ)

Efficient Deployment 
(TinyChat)

AWQ

Edge AI 2.0
General models with world knowledge



Song Han: Visual Language Models for Edge AI 2.0

VILA: Visual Language Model on the Edge
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Song Han: Visual Language Models for Edge AI 2.0
VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

VILA deployed on Jetson Orin (click to play)

Augments the language model with interleaved image-text

GTC demo booth#: K033

Goal: multi-modal LLM, enhance visual reasoning by language model, enable in-context learning and reasoning across images 

Challenge: learn from visual inputs without destroying the LLM. Computationally heavy to deploy on the edge. 

Our Solution: VILA provides efficient recipe from data curation to training to deployment for VLM. Interleaved image-text 
pretraining enables in-context learning. 
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VILA: Visual Language Model
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VILA: Visual Language Model
In context learning and multi-image reasoning 

15
VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]
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More in context learning examples

Underground. Congress. LLaVA-1.5: Soulemes. 
Ours: Soulomes.

2+1=3 5+6=11 LLaVA-1.5: 3x6=18 
Ours: 3x6=18

Les sanglots longs 
des violons de 
l’automne blessent 
mon coeur d’une 
langueur 
monotone.

Pour qui sont ces 
serpents qui 
sifflent sur vos 
têtes?

LLaVA-1.5: Les serpents (snake) qui 
sifflent sur vos têtes sont-ils vos 
amis? 
Ours: Pourquoi ces flamands 
(flamingo) roses s'embrassent-ils?

Input few shot examples + target image Output

Romanticism Surrealism LLaVA-1.5: Surrealism 
Ours: Impressionism

VILA: Visual Language Model

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]
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VILA for Autonomous Driving
Zero-shot learning, explainable self-driving
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Q: If you are driving, should you honk at the pedestrians crossing the 
road in this case? Why?

A: In the image, a car is driving down a street with a group of people 
crossing the road. It is not appropriate to honk at pedestrians 
crossing the road, as it can be considered impolite and disrespectful. 
Instead, the driver should wait patiently for the pedestrians to cross 
safely before proceeding. Honking can cause distress and 
discomfort to the pedestrians and may also lead to accidents if the 
pedestrians are not aware of the approaching vehicle. It is essential 
to prioritize the safety and well-being of pedestrians in such 
situations.


Q: What is the person in the center of the image doing?

A: The person in the center of the image is pushing a stroller with a 
baby in it.


Q: What color is the traffic light in the image?

A: The traffic light in the image is red.

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]
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VILA for Driver Monitor System

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

Zero-shot learning

Q: Is the driver distracted? 
VILA : Yes, the driver is distracted, as he is looking at his 
cell phone while driving. This is a dangerous behavior that 
can lead to accidents and endanger the lives of the driver, 
passengers, and other road users. 

Q: Is the driver on the phone?  
VILA : Yes, the driver is on the phone while sitting in the 
driver's seat. 

Q: How many people are in the car? 
VILA: There are two people in the car. 

Q: Where is the passenger sitting? 
VILA: The passenger is sitting in the back seat of the car.

18
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VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

Zero-shot learning: UAV captured image explaining

User: Do facilities here look normal or need maintenance?

VILA: The facilities in the image, which are wind turbines, appear 
to be in good condition and functioning properly. They are situated 
in a large field with a clear blue sky, indicating that they are well-
maintained and not in need of immediate maintenance. The 
presence of multiple wind turbines in the field suggests that they 
are part of a larger wind farm, which is likely to be managed and 
maintained by professionals to ensure optimal performance and 
efficiency.

VILA for UAV monitoring

19
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VILA for Healthcare

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

Zero-shot learning: patient situation understanding

User: What is the patient status?

VILA: The patient is in a critical condition, as indicated 
by the presence of a ventilator and the fact that she is 
hooked up to a lot of wires.

User: Is the patient asleep?

VILA: Yes, the patient is asleep in the hospital bed.
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VILA for Healthcare

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

Zero-shot learning: training session understanding

User: What is the training session about?

VILA: The training session is about learning how to 
perform CPR (cardiopulmonary resuscitation) on a 
mannequin. The group of people, including nurses and 
possibly other medical professionals, are gathered 
around a mannequin to practice their skills and learn the 
proper techniques for administering CPR.

User: Will the practice cause pain to the patient in the image?

VILA: The image shows a group of people, including nurses 
and a mannequin, practicing CPR on a mannequin. While 
practicing CPR is essential for healthcare professionals, it is 
important to note that it is a simulation and not a real patient. 
The practice does not cause pain to the patient in the image, 
as it is a mannequin and not a living person.

21
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VILA for Smart Factory

VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

User : How many chip bags are 
picked by robot arm: 
 
VILA: Two chip bags are picked 
by robot arm 

User: The 8 input images are 
sampled at 2 frames per second. 
How long does it take for the 
robot arm to pick up one chip 
bag? 

VILA : The robot arm takes 1.5 
seconds to pick up the chip bag.

Zero-shot learning: monitoring factory production lines from video

22
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VILA for defect inspection
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VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

Zero-shot learning: crack detection
User: Is the building in healthy condition?

VILA: The building appears to be in a state of disrepair, with visible 
cracks and chips in the paint. This suggests that the building may be 
old, poorly maintained, or has experienced some form of damage or 
wear over time. The presence of these structural issues could 
potentially pose safety risks or negatively impact the building's 
overall appearance and value.

User: What are the likely service needed for this building?

VILA: The building in the image has a cracked wall and a damaged 
roof, which indicates that it requires repair and maintenance 
services. The cracked wall may require repairs to ensure structural 
integrity and prevent further damage. The damaged roof may need 
to be replaced or repaired to prevent water leakage and potential 
damage to the building's interior. Additionally, the building may need 
to be inspected for any other potential issues that may arise due to 
the damage.
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LLM Compression: Lower-bit Quantization
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Quantization can reduce deployment costs
Quantization lowers the bit-width and improves efficiency

25
VILA: On Pre-training for Visual Language Models [Lin et al., CVPR 2024]

• Serving a 175B GPT-3 model at least requires: 

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs 

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs

https://mcunet.mit.edu
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SmoothQuant: W8A8 Quantization for Cloud
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Goal: Quantize LLM to lower precision, both activation and weight 
Challenge: activation channels have many outliers, wasting the dynamic range (many channels became zero) 
Our Solution: Smooth the activations: 100*1= 10*10; Equalize the quantization difficult from activation to 
weights.  

* *=

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., ICML 2023)

26
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- LLaMA-65B GEMV [1, 8192] x [8192, 8192]

- NVIDIA A100 GPU 80GB: 312TFLOPS (int8), 2000GB/s


- Computational intensity: 


- Highly memory-bounded (~10^2 gap)!

W4A16 for Single Batch Serving
W8A8 cannot address low computational intensity of decoding

- W8A8 quantization improves arithmetic efficiency and memory 
efficiency by 2x compared to FP16. Is it enough?


- But single-query LLM inference (e.g., local) is still highly memory-
bounded. 


- We need low-bit weight-only quantization (e.g., W4A16) 

27

• A100, LLaMA-65B
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AWQ for On-Device LLM
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

AWQ [Lin et al., MLSys 2024]

Goal: deploy LLM on the edge: Jetson Orin, AI PC 

Challenge: weight memory bounded @low batch size; can’t fit; idle ALU. 

Our Solution: 4bit weights, fp16 activation, fp16 arithmetic. 

                      Activation-awareness: preserve the salient weight channel by scaling according to the activation magnitude. 
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AWQ: Activation-aware Weight Quantization
Targeting group-wise low-bit weight-only quantization (W4A16)

29

- Weight-only quantization reduces the memory requirement, and accelerates token generation by 
alleviating the memory bottleneck. 

- Group-wise/block-wise quantization (e.g., 64/128/256) offers a better accuracy-model size trade-off. 
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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AWQ: Activation-aware Weight Quantization
Targeting group-wise low-bit weight-only quantization (W4A16)

30

- Weight-only quantization reduces the memory requirement, and accelerates token generation by 
alleviating the memory bottleneck. 

- Group-wise/block-wise quantization (e.g., 64/128/256) offers a better accuracy-model size trade-off. 

- But there is still a performance gap with round-to-nearest (RTN) quantization (INT3-g128) 
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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AWQ: Activation-aware Weight Quantization
Observation: Weights are not equally important; 1% salient weights

31
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can 
greatly improve perplexity
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AWQ: Activation-aware Weight Quantization
Observation: Weights are not equally important; 1% salient weights
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can 
greatly improve perplexity 

- But how do we select salient channels? Should we select based on weight magnitude?

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

RTN

WFP16 Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16 
channel

0

10

20

30

40

50

FP16 RTN act weight random

OPT-6.7B Wiki-2 PPL↓

1% FP16 

degrade 1% FP16 
helps



Song Han: Visual Language Models for Edge AI 2.0

AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight

33
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- We find that weights are not equally important, keeping only 1% of salient weight channels in FP16 can 
greatly improve perplexity 

- But how do we select salient channels? Should we select based on weight magnitude? 

- This is not the truth!
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AWQ for Low-bit Weight-only Quantization
Salient weights are determined by activation distribution, not weight

34
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- But how do we select salient channels? Should we select based on weight magnitude? 

- No! We should look for activation distribution, but not weight! (Activation has outliers!)

Q(W)MixPrec
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- However, 1% FP16 is not hardware-friendly.
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AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)

35
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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- We need to consider activation-awareness for salient channels. 

- We solve for best hyper-parameters with a simple grid search.



Song Han: Visual Language Models for Edge AI 2.0

AWQ for Low-bit Weight-only Quantization
Protecting salient weights by scaling (no mixed prec.)

36
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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AWQ Results
Improving general LLM quantization (LLaMA & OPT)

37
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

AWQ
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AWQ Results
Quantization of multi-modal LMs (OpenFlamingo, captioning)

38
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- Improved quantized performance for both 4-bit and 3-bit quantization.  

- Big improvement even under 4-bit quantization (not very noticeable with QA benchmarks)
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AWQ Results
Quantization of instruction-tuned models

39
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- Comparing quantized Vicuna with FP16 counterparts 

- Test under both orderings (quantized vs FP16, FP16 vs quantized) to get rid of ordering bias
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AWQ Results
Quantization of multi-modal LMs (OpenFlamingo, captioning)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

- Improved quantized performance for both 4-bit and 3-bit quantization.  

- Big improvement even under 4-bit quantization (not very noticeable with QA benchmarks)
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AWQ Results
Quantization of multi-modal LMs (LLaVA, visual reasoning)

41
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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AWQ Results
Quantization of multi-modal LMs (LLaVA, visual reasoning)

42
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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SmoothQuant and AWQ Impacts

43

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

https://github.com/NVIDIA/
TensorRT-LLM#key-features

https://github.com/vllm-project/
vllm/blob/main/vllm/

model_executor/layers/
quantization/awq.py

lm-sys/FastChat https://github.com/lm-sys/
FastChat/blob/main/docs/awq.md

Transformer 
Quantization 

API

https://huggingface.co/docs/
transformers/main_classes/

quantization

lmdeploy
https://github.com/InternLM/

lmdeploy/blob/main/lmdeploy/lite/
quantization/awq.py

https://friendli.ai/blog/Unlocking-
Efficiency-of-Serving-LLMs-with-

Activation-aware-Weight-Quantization-
AWQ-on-PeriFlow/

https://github.com/replicate/vllm-
with-loras/blob/main/vllm/

model_executor/quantization_utils/
awq.py

Granite IBM’s internal code model, 
Granite, utilizes AWQ for 

quantization.

TensorRT-LLM

https://github.com/NVIDIA/TensorRT-LLM#key-features
https://github.com/NVIDIA/TensorRT-LLM#key-features
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TinyChat: Efficient LLMs Inference Engine

44
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TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency

• HuggingFace: easy to use, but slow 

• TensorRT-LLM: high efficiency, but harder to use


• TinyChat: efficient, lightweight, Python-native (composable with other stacks like vLLM)

45
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

Efficiency

Ease of use

TensorRT-LLM

HuggingFace
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TinyChat: A Lightweight Serving Infra
Supporting a wide range of models on NVIDIA Jetson Orin

46
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]
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• TinyChat achieves up to 1.5x faster runtime for Meta’s Llama models compared with systems specialized 
for this model.


• Compared with the only competitor that can support a diverse range of models, TinyChat is up to 7x faster.

• Remarkably, TinyChat’s front end is fully PyTorch-based. 
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TinyChat seamlessly supports VLMs
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

Model Precision A100 Tok/sec 4090 Tok / sec Orin Tok / sec

VILA-7B FP16 81.6 58.5 11.5

VILA-7B-AWQ INT4 155.3 168.1 35.6

VILA-13B FP16 48.5 OOM 6.1

VILA-13B-AWQ INT4 102.1 99.0 17.5

Accelerating visual-language models across different GPU platforms

• TinyChat also seamlessly supports VILA, delivering ~3x speedup over FP16 on Orin and allows 
interactive VLM deployment on the edge (laptops and AIoT).
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TinyChat: A Lightweight Serving Infra
Demo on AGX Orin (edge LLM inference)
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• Orin Nano has 200GB/s memory bandwidth; even more memory-bounded

• Model size: 7B. ~30 token/s generation
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TinyChat: A Lightweight Serving Infra
Demo on TinyChatComputer, powered by NVIDIA Jetson Orin Nano
• On a GPU board with just ~7G available memory, TinyChat enables efficient deployment of 7B 

large language models, thanks to AWQ quantization.

• Worked with students from Harvard 
Graduate School of Design to manufacture a 
physical TinyChatComputer demo.

https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
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TinyChat: A Lightweight Serving Infra
TinyChat seamlessly supports personal laptops with Intel / ARM CPUs

MSI Laptop (RTX 4070 GPU) Macbook (ARM CPU) 

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration  [Lin et al., MLSys 2024]

https://github.com/mit-han-lab/llm-awq


Song Han: Visual Language Models for Edge AI 2.0

TinyChat:  VILA and Edge AI 2.0
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AWQ

Edge AI 2.0: Foundation models running on the edge efficiently

VILA: Multi-modal capability for LLMs AWQ: LLM quantization, 4x weight reduction

TinyChat: Efficient framework for LLM deployment

W4A16

Edge AI 2.0: Multi-model LM on the edge!

W4A16
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TinyChat:       — Visual language models (VILA)
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Efficient image reasoning on Jetson Orin: TinyChat w/ VILA model family
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VILA-13B + AWQ: 100 tokens/s on 4090

VILA: visual for visual language model
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Single image for multi-round Q&A:  A driving scenario
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VILA-13B + AWQ: 84 tokens/s (3 image inputs) on RTX 4090

VILA: visual for visual language model

54

In context learning with multiple image inputs
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VILA: visual for visual language model
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VILA-13B + AWQ: 83 tokens/s (3 image inputs) on RTX 4090

Multi-round Q&A with multi-image inputs
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VILA: visual for visual language model
Run visual language models on personal laptops

VILA-7B + AWQ: Running on MacBook Arm CPU

https://github.com/mit-han-lab/llm-awq
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VILA: visual for visual language model
Try out our online demo for VILA models!

https://vila.hanlab.ai/

https://vila.hanlab.ai/
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Summary
Edge AI 2.0 Requires Full-Stack Optimization
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AWQ

(Supply of Computation)
System and Hardware

Application
(Demand for Computation)

Model Compression 
(Bridging the gap between demand and supply for computation)


