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Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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The Leading Development
Platform for Edge ML




Decarbonization | . pigitalization

Driving decarbonization and digitalization. Together.

Infineon serving all target markets as -
Leader in Power Systems and loT (I"fineon

www.infineon.com
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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Join Growing tinyML Communities:

20k members in
50 Groups in 42 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members
&
16k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)
www.youtube.com/tinyML
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alks — Amplifying Impact — Unleashing the Potential of TinyML
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| — REGISTER NOW
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tinyML EMEA
June 24 -26, 2024 in Milan, ltaly
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Slides & Videos will be posted Please use the Q&A window for your

tomorrow questions
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Zhaojing (Jim) Huang

Zhaojing (Jim) Huang is a second-year PhD student in the
School of Biomedical Engineering at the University of
Sydney. His research focuses on the application of tinyML
In the analysis of bio-signal data, particularly in the realm of
medical diagnostics. With a keen interest in leveraging
cutting-edge technology for healthcare advancements, he
IS committed to exploring the potential of machine learning
In addressing critical challenges in biomedical engineering.
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Leping (Steve) Yu

Leping Yu, a second-year Master's student at the
University of Sydney's School of Biomedical Engineering,
IS dedicated to researching circuit design, signal
processing, and system development, particularly in the
realm of biosignal hardware, showcasing a strong interest
in exploring diverse devices for biosignal measurements.




Unleashing The Power of
Tiny Neural Network
Models in Medical Devices
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1.Introduction
2.Challenges
3.Strategies & Goals
4.Current Research
5. Future Directions
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 Wearable Devices:
— Body-worn devices gather heart rate, ECG, EEG data
* Biosignal Processing:

— Analyzes wearable biosignals with filtering, noise reduction, and feature
extraction

* Applications:

— Used in healthcare for continuous monitoring, early detection,
personalized medicine, fitness tracking, stress management, and well-
being
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e Machine Learning (ML):

— Data-Driven Autonomy: ML enables autonomous decision-making through
data learning.

— Broad Influence: It transforms healthcare, finance, autonomous vehicles,
and language processing.

* Medical/Bio-Signal ML:

— Enhancing Diagnostics: ML applies to complex medical bio-signals,
improving patient care.

— Healthcare Transformation: It revolutionizes healthcare through bio-signal
analysis, like ECG and EEG, from disease detection to treatment
optimization.
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Vision:
— Achieving Precise Al Processing on Resource-Limited Medical
Devices

Goals:

— Optimize Bio-Signal Models: Develop generalizable bio-signal
processing models with low latency and minimal power
consumption

— Achieve Al Precision: Enable accurate Al-based processing on
resource-constrained medical devices




2. Challenges
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* Model Generalizability

— Model performance deteriorates when deployed on external
datasets

Personalization

— Customizing algorithms for specific user preferences to offer
personalized experiences

Model Size
— Deploying large model architectures on devices is challenging
Model Performance

— The model's performance may be suboptimal with a smaller
architecture

* Power Consumption
— Power efficiency is crucial for battery-powered wearables
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* Population Diversity

— Model generalizability across diverse demographics (age,
gender, ethnicity) is crucial

e Environmental Factors

— Noise, movement artifacts, and different conditions, impact
data quality and model performance

* Long-Term Adaptability

— Maintaining model accuracy over time with continuous
adaptation to changing signals and user behaviors
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 Dynamic User Preferences

— Adapting to evolving user preferences for effective
personalized recommendations over time

* Individual Variability

— Personalized models account for individual
differences in physiology, health, and lifestyle for
tailored recommendations

* Long-term Engagement

— Maintaining engagement with personalized @’
insights and recommendations for consistent
usage and adherence




Model Size

* Resource Constraints
— Creating compact, efficient models for
resource-constrained wearables
* Model Complexity
— Balancing model complexity and size for

accuracy and computational efficiency on
wearable devices

TALKS
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* Accuracy
— Aiming for high prediction accuracy in healthcare
decisions for reliability and trustworthiness
* Low Latency

— Reducing model processing time for quicker
responses and feedback with minimized latency

 Resource Efficiency

— Optimizing model resource usage for effective
performance on resource-constrained wearables
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* Battery Life

— Optimizing model design to extend wearable device
battery life for continuous operation by reducing power
consumption

e Efficient Algorithms

— Energy-efficient models for data processing, inference,
and communication to reduce computational load and
power usage

* Low-Power Components

— Utilizing low-power components in wearables to save
power while maintaining performance




3. Strategies & Goals
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Strategies & Goals

e Utilizing ECG as the Primary Bio-Signal in the Study

e Study Techniques to Enhance Model Generalizability
* Create Models with Shallow Network Architecture

* Develop Power-Efficient Models

 Enhance Model Accuracy

 Hardware Compatibility




4. Current Research
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* Employing a model trained on the world's largest known 12-lead
ECG abnormality dataset

u IResBIk ResBlk | ResBlk | ResBIlk Dense

-—y
/’ -~

—
” ~~§
” ~~
—
- —
" ~~

)H
t

Max
Pooling

A 4

Ribeiro, Anténio H., et al. "Automatic diagnosis of the 12-lead ECG using a deep neural
network." Nature communications 11.1 (2020): 1760.
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 Selecting a subset from the dataset with a range of different
characteristics

Balance of classes, Multi-abnormality patients, Age, Random

Subset I I 111
1dAVD 3,234 6,677 3,341
RBBB 4,320 7,020 3,819
LBBB 3,443 1,935 3411

SB 3,367 3,624 3,324
AT 3,561 1,043 3,846
ST 3,299 3,219 3,395
Normal 3,000 3,000 3,000

Age Group

50+ T
75-89
60-74
45-59
30-44
15-29

Huang, Zhaojing, et al. "Generalization Challenges in ECG Deep Learning: Insights from
Dataset Characteristics and Attention Mechanism." Future Cardiology (Accepted).



Y

Generalizability

webcast

* Dataset characteristics play a vital role in model
generalization

* A balanced dataset, even at just 1% of a larger set,
can outperform larger set in generalization

e Self-attention mechanisms improve model
generalization

Huang, Zhaojing, et al. "Generalization Challenges in ECG Deep Learning: Insights from



Shallow Architecture
webcast
e Diagonal State Space Sequence
(S4D) model Batch sizex ;|  Batchsizex |
4096 x 12 ! 4096 x 128 :

— Share a similar foundation
with the Mamba model | } |

— Faster due to parallel JMW
computations for state

variable updates, ideal for
long sequences

Arrythmia

—  Simpler implementation
with fewer parameters and
calculations compared to
complex models like LSTMs

—  Advantageous for limited
computational resources

Huang, Zhaojing, et al. "S4D-ECG: A shallow state-of-the-art model for cardiac abnormality

classification." Cardiovascular Engineering and Technology (2024): 1-12.
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 Diagonal State Space Sequence (S4D) model
— Employed a stacked model with 4 S4D layers

— Showcasing good performance and strong
generalization capabilities

— Demonstrated effective handling of moderate noise
levels in the signal

— Achieved excellent detection performance using
only 1-lead data (Potential for edge device
implementation)

Huang, Zhaojing, et al. "S4D-ECG: A shallow state-of-the-art model for cardiac abnormality
classification." Cardiovascular Engineering and Technology (2024): 1-12.
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Preprocessed and STFT-ed
ECG
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Abnormalities

 Neural Circuit Policy (NCP)-based models
— Fewer neurons, enhancing efficiency for training

L- 1 and running on resource-constrained devices
— Designed for interpretability, offers insight into
e decision-making processes
12-lead Raw ECG Data — Offer a biomimetic approach for developing

efficient and robust Al systems.

Huang, Zhaojing, et al. "Efficient edge-Al models for robust ECG abnormality detection on
resource-constrained hardware." Journal of Cardiovascular Translational Research (2024): 1-14.
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* Neural Circuit Policy (NCP)-based models

— Introduces models: ConvLSTM2D-liquid time-constant network
(CLTC) and ConvLSTM2D-closed-form continuous-time neural
network (CCfC)

— Both models perform comparably on TNMG data, with CCfC
slightly more accurate and CLTC better at handling empty
channels

— Successfully deployed on a resource-constrained
microcontroller, confirming generalization on the CPSC dataset

— Efficient resource use: 70.6% memory and 9.4% flash memory of
a STM32F746G microcontroller

Hua gZthtIEff tdgAIdef thCGb mltydtt
resource-constrained hardwar nal of Cardiovascular Translational Res h(2024) 1-14.
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* Spiking Neural Networks (SNN)

— Efficiently model temporal dynamics and event-based
processing

— Mimic biological neural networks closely, enhancing realism
in data processing

— Potentially achieve higher computational efficiency and
reduced energy consumption compared to traditional
artificial neural networks

— Particularly effective for tasks involving temporal information,
such as time-series data or event-based recognition

Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio-
inspired and spiking shallow network." APL Machine Learning 2.2 (2024).



Power-Efficient Model

webcast Scaling and Spiking ECG

> Spiking Conv2dLSTM

I nput Il Command

* Fusion of spiking 2D
ConvLSTM2D with bio-
inspired CfC

| Output

 Comparable performance to

Processed ECG

non-spiking ConvCfC model

* Power Efficient: 4.68 pJ/Inf
on a neuromorphic chip vs

450 pl/Inf on a conventional Raw ECG Data I

processor

.\
Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio- \\ Abnormalities
.\

inspired and spiking shallow network." APL Machine Learning 2.2 (2024).
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* Proof of concept demonstration for on-device

training on the resource-constrained Radxa Zero
microprocessor

e Superior robustness in handling missing ECG channels

during inference compared to non-spiking ConvCfC
model

* Effective single-lead ECG analysis with reasonable
accuracy, despite focus on computational
complexities

Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio-
inspired and spiking shallow network." APL Machine Learning 2.2 (2024).
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e Combined the S4D and NCP models to create a hybrid model,
leveraging the strengths of both

 Achieved high performance and maintained a compact 242kB
architecture

 Deployed this model on the Radxa Zero microprocessor for on-
device training demonstrations

mmmm  Input Neurons mmmm Command Neurons

Raw or Scaled ECG Data A Single S4D Layer

L‘ 1]

Huang, Zhaojing, et al. "Cardiac abnormality detection with a tiny diagonal state space model
based on sequential liquid neural processing unit." APL Machine Learning 2.2 (2024).

I Inter-Neurons I Output Neurons

5 e gle
e e
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Abnormalities
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«  Achieves precise detection  as] = e
with minimal data input, o
significantly lowering latency o 243

« The model can be reduced . ]
to just 25KB, meeting even 322 2415
more rigorous resource 2000 | & 20 8
constraints on devices 53132 jZZE

< 0.95

* Its compact size streamlines > e
on-device fine-tuning, 0o >
enhancing personalization 0901
capabilities oo o

128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8
Model Dimension

Huang, Zhaojing, et al. "Cardiac abnormality detection with a tiny diagonal state space model

based on sequential liquid neural processing unit." APL Machine Learning 2.2 (2024).
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 Develop novel methods to enhance on-
device inference accuracy

* Implement advanced techniques to
preserve personalized fine-tuning
capabilities

 Employ strategies to effectively address
privacy concerns
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This multimedia file is copyright © 2024 by tinyML
Foundation. All rights reserved. It may not be duplicated
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML
Foundation.

www.tinyml.org
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This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org
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