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Zhaojing (Jim) Huang is a second-year PhD student in the 

School of Biomedical Engineering at the University of 

Sydney. His research focuses on the application of tinyML 

in the analysis of bio-signal data, particularly in the realm of 

medical diagnostics. With a keen interest in leveraging 

cutting-edge technology for healthcare advancements, he 

is committed to exploring the potential of machine learning 
in addressing critical challenges in biomedical engineering.
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realm of biosignal hardware, showcasing a strong interest 
in exploring diverse devices for biosignal measurements.
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1. Introduction

Contextualizing and Providing an Overview of the Research 
Subject



Wearable Biosignal Devices
• Wearable Devices:

– Body-worn devices gather heart rate, ECG, EEG data

• Biosignal Processing:
– Analyzes wearable biosignals with filtering, noise reduction, and feature 

extraction

• Applications:
– Used in healthcare for continuous monitoring, early detection, 

personalized medicine, fitness tracking, stress management, and well-
being



Topic Introduction
• Machine Learning (ML):

– Data-Driven Autonomy: ML enables autonomous decision-making through 
data learning.

– Broad Influence: It transforms healthcare, finance, autonomous vehicles, 
and language processing.

• Medical/Bio-Signal ML:
– Enhancing Diagnostics: ML applies to complex medical bio-signals, 

improving patient care.

– Healthcare Transformation: It revolutionizes healthcare through bio-signal 
analysis, like ECG and EEG, from disease detection to treatment 
optimization.



Vision and Goals
Vision:

– Achieving Precise AI Processing on Resource-Limited Medical 
Devices

Goals:

– Optimize Bio-Signal Models: Develop generalizable bio-signal 
processing models with low latency and minimal power 
consumption

– Achieve AI Precision: Enable accurate AI-based processing on 
resource-constrained medical devices



2. Challenges

Challenges hindering the pursuit of the vision and objectives



Main Challenges
• Model Generalizability

– Model performance deteriorates when deployed on external 
datasets

• Personalization
– Customizing algorithms for specific user preferences to offer 

personalized experiences
• Model Size

– Deploying large model architectures on devices is challenging
• Model Performance

– The model's performance may be suboptimal with a smaller 
architecture

• Power Consumption
– Power efficiency is crucial for battery-powered wearables



Model Generalizability
• Population Diversity

– Model generalizability across diverse demographics (age, 
gender, ethnicity) is crucial

• Environmental Factors
– Noise, movement artifacts, and different conditions, impact 

data quality and model performance

• Long-Term Adaptability
– Maintaining model accuracy over time with continuous 

adaptation to changing signals and user behaviors



Personalization
• Dynamic User Preferences

– Adapting to evolving user preferences for effective 
personalized recommendations over time

• Individual Variability
– Personalized models account for individual 

differences in physiology, health, and lifestyle for 
tailored recommendations

• Long-term Engagement
– Maintaining engagement with personalized 

insights and recommendations for consistent 
usage and adherence



Model Size
• Resource Constraints

– Creating compact, efficient models for 
resource-constrained wearables

• Model Complexity

– Balancing model complexity and size for 
accuracy and computational efficiency on 
wearable devices



Model Performance
• Accuracy

– Aiming for high prediction accuracy in healthcare 
decisions for reliability and trustworthiness

• Low Latency
– Reducing model processing time for quicker 

responses and feedback with minimized latency

• Resource Efficiency
– Optimizing model resource usage for effective 

performance on resource-constrained wearables



Power Consumption
• Battery Life

– Optimizing model design to extend wearable device 
battery life for continuous operation by reducing power 
consumption

• Efficient Algorithms
– Energy-efficient models for data processing, inference, 

and communication to reduce computational load and 
power usage

• Low-Power Components
– Utilizing low-power components in wearables to save 

power while maintaining performance



3. Strategies & Goals

Addressing the Challenges



Strategies & Goals
• Utilizing ECG as the Primary Bio-Signal in the Study

• Study Techniques to Enhance Model Generalizability

• Create Models with Shallow Network Architecture

• Develop Power-Efficient Models

• Enhance Model Accuracy

• Hardware Compatibility



4. Current Research

Work Achieved Thus Far



Generalizability

Ribeiro, Antônio H., et al. "Automatic diagnosis of the 12-lead ECG using a deep neural 

network." Nature communications 11.1 (2020): 1760.

Conv BN
ReL

U
ResBlk Dense σResBlk ResBlk ResBlk

Conv BN
ReL

U

Dropou

t
Conv BN

ReL

U

Dropou

t

1 × 1

Conv

Max 

Pooling

• Employing a model trained on the world's largest known 12-lead 
ECG abnormality dataset



Generalizability
• Selecting a subset from the dataset with a range of different 

characteristics

– Balance of classes, Multi-abnormality patients, Age, Random

Huang, Zhaojing, et al. "Generalization Challenges in ECG Deep Learning: Insights from 

Dataset Characteristics and Attention Mechanism." Future Cardiology (Accepted).



Generalizability

Huang, Zhaojing, et al. "Generalization Challenges in ECG Deep Learning: Insights from 

Dataset Characteristics and Attention Mechanism." Future Cardiology (Accepted).

• Dataset characteristics play a vital role in model 
generalization

• A balanced dataset, even at just 1% of a larger set, 
can outperform larger set in generalization

• Self-attention mechanisms improve model 
generalization



Shallow Architecture
• Diagonal State Space Sequence 

(S4D) model

– Share a similar foundation 
with the Mamba model

– Faster due to parallel 
computations for state 
variable updates, ideal for 
long sequences

– Simpler implementation 
with fewer parameters and 
calculations compared to 
complex models like LSTMs

– Advantageous for limited 
computational resources

Huang, Zhaojing, et al. "S4D-ECG: A shallow state-of-the-art model for cardiac abnormality 

classification." Cardiovascular Engineering and Technology (2024): 1-12.
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Shallow Architecture
• Diagonal State Space Sequence (S4D) model

– Employed a stacked model with 4 S4D layers

– Showcasing good performance and strong 
generalization capabilities

– Demonstrated effective handling of moderate noise 
levels in the signal

– Achieved excellent detection performance using 
only 1-lead data (Potential for edge device 
implementation)

Huang, Zhaojing, et al. "S4D-ECG: A shallow state-of-the-art model for cardiac abnormality 

classification." Cardiovascular Engineering and Technology (2024): 1-12.



Shallow Architecture

• Neural Circuit Policy (NCP)-based models

– Fewer neurons, enhancing efficiency for training 
and running on resource-constrained devices

– Designed for interpretability, offers insight into 
decision-making processes

– Offer a biomimetic approach for developing 
efficient and robust AI systems.

Huang, Zhaojing, et al. "Efficient edge-AI models for robust ECG abnormality detection on 

resource-constrained hardware." Journal of Cardiovascular Translational Research (2024): 1-14.
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Shallow Architecture

Huang, Zhaojing, et al. "Efficient edge-AI models for robust ECG abnormality detection on 

resource-constrained hardware." Journal of Cardiovascular Translational Research (2024): 1-14.

• Neural Circuit Policy (NCP)-based models

– Introduces models: ConvLSTM2D-liquid time-constant network 
(CLTC) and ConvLSTM2D-closed-form continuous-time neural 
network (CCfC)

– Both models perform comparably on TNMG data, with CCfC
slightly more accurate and CLTC better at handling empty 
channels

– Successfully deployed on a resource-constrained 
microcontroller, confirming generalization on the CPSC dataset

– Efficient resource use: 70.6% memory and 9.4% flash memory of 
a STM32F746G microcontroller



Power-Efficient Model
• Spiking Neural Networks (SNN)

– Efficiently model temporal dynamics and event-based 
processing

– Mimic biological neural networks closely, enhancing realism 
in data processing

– Potentially achieve higher computational efficiency and 
reduced energy consumption compared to traditional 
artificial neural networks

– Particularly effective for tasks involving temporal information, 
such as time-series data or event-based recognition

Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio-

inspired and spiking shallow network." APL Machine Learning 2.2 (2024).



Power-Efficient Model
• Fusion of spiking 2D 

ConvLSTM2D with bio-

inspired CfC

• Comparable performance to 

non-spiking ConvCfC model

• Power Efficient: 4.68 μJ/Inf 

on a neuromorphic chip vs 

450 μJ/Inf on a conventional 

processor

Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio-

inspired and spiking shallow network." APL Machine Learning 2.2 (2024).
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Power-Efficient Model
• Proof of concept demonstration for on-device 

training on the resource-constrained Radxa Zero 
microprocessor

• Superior robustness in handling missing ECG channels 
during inference compared to non-spiking ConvCfC
model

• Effective single-lead ECG analysis with reasonable 
accuracy, despite focus on computational 
complexities

Huang, Zhaojing, et al. "On-device edge-learning for cardiac abnormality detection using a bio-

inspired and spiking shallow network." APL Machine Learning 2.2 (2024).



Tiny Efficient Model
• Combined the S4D and NCP models to create a hybrid model, 

leveraging the strengths of both

• Achieved high performance and maintained a compact 242kB 
architecture

• Deployed this model on the Radxa Zero microprocessor for on-
device training demonstrations

Huang, Zhaojing, et al. "Cardiac abnormality detection with a tiny diagonal state space model 

based on sequential liquid neural processing unit." APL Machine Learning 2.2 (2024).
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Tiny Efficient Model
• Achieves precise detection 

with minimal data input, 
significantly lowering latency

• The model can be reduced 
to just 25KB, meeting even 
more rigorous resource 
constraints on devices

• Its compact size streamlines 
on-device fine-tuning, 
enhancing personalization 
capabilities

Huang, Zhaojing, et al. "Cardiac abnormality detection with a tiny diagonal state space model 

based on sequential liquid neural processing unit." APL Machine Learning 2.2 (2024).

  

  



5. Future Directions

Advancing Further



Future Direction

• Develop novel methods to enhance on-
device inference accuracy

• Implement advanced techniques to 
preserve personalized fine-tuning 
capabilities

• Employ strategies to effectively address 
privacy concerns



Thank you!

Questions?
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