On Device Learning Forum

Enabling Ultra-low Power Machine Learning at the Edge

“Online Learning TinyML for Anomaly Detection Based on Extreme Values Theory”

Eduardo Dos Santos Pereira – Technology Specialist, SENAI

May 16, 2023

www.tinyML.org
The goal of On Device Learning (ODL) is to make edge devices “smarter” and more efficient by observing changes in the data collected and self-adjusting/reconfiguring the device’s operating model. Optionally the “knowledge” gained by the device is shared with other deployed devices.

Danilo Pau, Elias Fallon, Evgeni Gousev, Davis Sawyer, Ira Feldman, Christopher B. Rogers
tinyML On Device Learning Forum
8/31 – 9/1 , 2022 Online

Accademia on 8/31/2022

– **On-Device Learning Under 256KB Memory**, Song HAN, Assistant Professor, MIT EECS
– **Neural Network ODL for Wireless Sensor Nodes**, Hiroki MATSUTANI, Professor, Keio University
– **Scalable, Heterogeneity-Aware and Trustworthy Federated Learning**, Yiran CHEN, Professor, Duke University
– **On-Device Learning For Natural Language Processing with BERT**, Warren J. GROSS, Professor, McGill University
– **Is on-device learning the next “big thing” in TinyML?**, Manuel ROVERI, Associate Professor, Politecnico di Milano
– **ODL Professors Panel**

Industry on 9/1/2022

– **TinyML ODL in industrial IoT**, Haoyu REN, PhD Student, Technical University of Munich/Siemens
– **NeuroMem® wearable, hardwired sub milliwatt real time machine learning with wholly parallel access to “neuron memories” fully explainable**, Guy PAILLET, Co-founder, General Vision
– **Using Coral Dev Board Micro for ODL innovations**, Bill LUAN, Senior Program Manager, Google
– **Platform for Next Generation Analog AI Hardware Acceleration**, Kaoutar EL MAGHRAOUI, Principal Research Scientist, IBM T.J Watson Research Center
– **Enabling on-device learning at scale**, Joseph SORIAGA, Sr. Director of Technology, Qualcomm
– **Training models on tiny edge devices**, Valeria TOMASELLI, Senior Engineer, STMicroelectronics

https://www.tinyml.org/event/on-device-learning/
A framework of algorithms and associated tool for on-device tiny learning, Danilo PAU, Technical Director, IEEE and ST Fellow, STMicroelectronics

In Sensor and On-device Tiny Learning for Next Generation of Smart Sensors, Michele MAGNO, Head of the Project-based learning Center, ETH Zurich, D-ITET

Continual On-device Learning on Multi-Core RISC-V MicroControllers, Manuele RUSCI, Embedded Machine Learning Engineer, Greenwaves

On-device continuous event-driven deep learning to avoid model drift, Bijan MOHAMMADI, CSO, Bondzai

https://www.tinyml.org/event/on-device-learning/
On Device Learning Forum 2023, May 16 2023

- 8:00 - 8:10 Opening remarks by Danilo Pau
- 8:10 - 8:40 Charlotte Frenkel "Merging insights from artificial and biological neural networks for neuromorphic edge intelligence"
- 8:40 - 9:40 Giorgia DellaFerrera "Forward Learning with Top-Down Feedback: Solving the Credit Assignment Problem without a Backward Pass"
- 9:40 - 10:10 Guy Paillet "NeuroMem®, Ultra Low Power hardwired incremental learning and parallel pattern recognition"
- 10:10 - 10:40 Aida Todri-Sanial "On-Chip Learning and Implementation Challenges with Oscillatory Neural Networks"
- 10:40 - 11:10 Eduardo S. Pereira “Online Learning TinyML for Anomaly Detection Based on Extreme Values Theory”
- 11:10 - 11:15 Closing remarks by Danilo Pau

Pacific Time
Thank you, tinyML Strategic Partners, for committing to take tinyML to the next Level, together
Executive Strategic Partners
EDGE IMPULSE

The Leading Development Platform for Edge ML

edgeimpulse.com
Advancing AI research to make efficient AI ubiquitous

Power efficiency
- Model design, compression, quantization, algorithms, efficient hardware, software tool

Personalization
- Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning
- Robust learning through minimal data, unsupervised learning, on-device learning

Perception
- Object detection, speech recognition, contextual fusion

Reasoning
- Scene understanding, language understanding, behavior prediction

Action
- Reinforcement learning for decision making

A platform to scale AI across the industry
Accelerate Your Edge Compute

Making Edge AI A Reality

www.syntiant.com
Platinum Strategic Partners
Renesas is enabling the next generation of AI-powered solutions that will revolutionize every industry sector.
DEPLOY VISION AI AT THE EDGE AT SCALE
Gold Strategic Partners
Witness potential made possible at analog.com.

Where what if becomes what is.
Easily deploy your tinyML solutions with Arduino Pro

arduino.cc/pro
Arm AI Virtual Tech Talks

The latest in AI trends, technologies & best practices from Arm and our Ecosystem Partners.

Demos, code examples, workshops, panel sessions and much more!

Fortnightly Tuesday @ 4pm GMT/8am PT

Find out more: www.arm.com/techtalks
Driving decarbonization and digitalization. Together.

Infineon serving all target markets as Leader in Power Systems and IoT

www.infineon.com
NEUROMORPHIC INTELLIGENCE FOR THE SENSOR-EDGE
The Right Edge AI Tools Can Make or Break Your Next Smart IoT Product

Analytics Toolkit Suite

AutoML

Data Collection

Test & Validation

Code Generation

Team Collaboration

Version Control and Model Management

sensiml.com/tinyML
STMicroelectronics provides extensive solutions to make tiny Machine Learning easy
We engineer exceptional experiences for consumers in the home, at work, in the car, or on the go.

www.synaptics.com
Join Growing tinyML Communities:

tinyML - Enabling ultra-low Power ML at the Edge

14.7k members in 47 Groups in 39 Countries

The tinyML Community
https://www.linkedin.com/groups/13694488/

4k members & 11.6k followers
Subscribe to tinyML YouTube Channel for updates and notifications (including this video)

www.youtube.com/tinyML
tinyML EMEA Innovation Forum

June 26 - 28, 2023
Amsterdam

EMEA 2023
https://www.tinyml.org/event/emea-2023

More sponsorships are available: sponsorships@tinyml.org
Reminders

Slides & Videos will be posted tomorrow

tinyml.org foraums youtube.com/tinyml

Please use the Q&A window for your questions
Eduardo Dos Santos Pereira

Eduardo S. Pereira holds a Ph.D. degree in Astrophysics from the Brazilian National Institute for Space Research (INPE). He has completed postdoctoral research in Cosmology (INPE), Computational Astronomy (University of São Paulo USP), and Artificial Intelligence (UNICAMP). He works as a Technology Specialist at SENAI in São José dos Campos, focusing on topics such as Artificial Intelligence, Embedded Systems, Computer Vision, Modeling, and Simulation of physical processes.
On Device Learning:
TinyML for Anomaly Detection Based on Extreme Values Theory

Dr. Eduardo dos Santos Pereira
Eduardo S. Pereira
Ph. D. Artificial Intelligence Specialist

https://www.linkedin.com/in/eduardo-s-pereira-0a036719
Artificial for Tiny Devices

Hardware

<table>
<thead>
<tr>
<th></th>
<th>Raspberry Pico (W)</th>
<th>Arduino Nano Sense</th>
<th>ESP 32</th>
<th>Seeed XIAO Sense / ESP32S3</th>
<th>Arduino Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>32Bits CPU</td>
<td>Dual-core Arm Cortex-M0+</td>
<td>Arm Cortex-M4F</td>
<td>Xtensa LX6 Dual Core</td>
<td>Arm Cortex-M4F (BLE) Xtensa LX7 Dual Core</td>
<td>Dual Core Arm Cortex M7/M4</td>
</tr>
<tr>
<td>CLOCK</td>
<td>133MHz</td>
<td>64MHz</td>
<td>240MHz</td>
<td>64 / 240MHz</td>
<td>480/240MHz</td>
</tr>
<tr>
<td>RAM</td>
<td>264KB</td>
<td>256KB</td>
<td>520KB (part available)</td>
<td>256KB / 8MB</td>
<td>1MB</td>
</tr>
<tr>
<td>ROM</td>
<td>2MB</td>
<td>1MB</td>
<td>2MB</td>
<td>2MB / 8MB</td>
<td>2MB</td>
</tr>
<tr>
<td>Radio</td>
<td>(Yes for W)</td>
<td>BLE</td>
<td>BLE/WiFi</td>
<td>BLE / WiFi (ESP32S3)</td>
<td>BLE/WiFi</td>
</tr>
<tr>
<td>Sensors</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes (Sense)</td>
<td>Yes (Nclia)</td>
</tr>
<tr>
<td>Bat. Power Manag.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>$$$$</td>
<td>$</td>
<td>$</td>
<td>$$$$$</td>
</tr>
</tbody>
</table>

Challenges

The ability to detect anomalies is crucial in many applications:

- Tracking environmental and location parameters based on sensor readings,
- Detecting intrusions
- Identifying credit card fraud

- In all of these scenarios, the data typically has a “normal” pattern, and any deviations from this pattern are considered anomalies.
Anomaly in Time Series

Source: Belay et. al 2023.
Anomaly in Time Series

Source: Belay et. al 2023.
Random Forest for Anomaly Classification
Extreme Values Theory
Extreme Values Theory

EVT provides a family of distributions to model extreme values based on data characteristics. A Generalized Extreme Value distribution (GEV) can be expressed as [11]:

\[
GEV(x) = \begin{cases}
\frac{1}{\lambda} e^{-\frac{x-\eta}{\lambda}} & \text{if } \kappa \neq 0 \\
\frac{1}{\lambda} e^{-(x+\eta)} & \text{if } \kappa = 0
\end{cases}
\]

(2)

Here, \(t = \frac{x-\eta}{\lambda} \) and \(\nu = 1 + \kappa \frac{x-\eta}{\lambda} \), where \(\kappa, \lambda, \) and \(\eta \) are the shape, scale, and location parameters, respectively. The GEV can represent one of the following distributions: i) Gumbel for \(\kappa = 0 \); ii) Frechet for \(\kappa > 0 \); iii) Reversed Weibull for \(\kappa < 0 \).

If we assume continuous and bounded (up or down limit) data and a system (or part) with multiple failure modes, failure is best modelled by the Weibull distribution [3].

The cumulative distribution function (CDF) of the Weibull distribution can be expressed as [9]:

\[
F(x) = 1 - \exp \left(-\left(\frac{x-\eta}{\lambda} \right)^\kappa \right),
\]

(3)

where \(\eta \) is the location parameter.

In the next section, we discuss how to automatically determine parameter Weibull CDF from the data.
Extreme value Theory

Window Size

Point to be Evaluated.
Extreme Value Theory

Weibull Distribution Fitting

Normalization and Thresholding

Time
Extreme Values Theory
TABLE 1. TinyML meta-parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Parameter of bound values function</td>
</tr>
<tr>
<td>δ</td>
<td>Threshold of CDF to evaluate if a point is an outlier.</td>
</tr>
<tr>
<td>N</td>
<td>Total number of maximum used to find shape and scale parameter of Weibull CDF.</td>
</tr>
<tr>
<td>M</td>
<td>Total of outlier, used to classify the nearest outliers as a collective anomaly.</td>
</tr>
<tr>
<td>T</td>
<td>Average time range among outliers occurrence necessary to classify outliers as a collective anomaly.</td>
</tr>
<tr>
<td>R</td>
<td>The data time sampling ratio.</td>
</tr>
</tbody>
</table>
Extreme Values Theory

TABLE 2. Summary of Experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>γ</th>
<th>δ</th>
<th>N</th>
<th>M</th>
<th>T (ms)</th>
<th>R (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.94</td>
<td>5</td>
<td>5</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.94</td>
<td>5</td>
<td>5</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.94</td>
<td>10</td>
<td>5</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.94</td>
<td>5</td>
<td>10</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.94</td>
<td>5</td>
<td>5</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.94</td>
<td>5</td>
<td>5</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>
MicroPython and is running on an Arduino RP2040. MicroPython is a lightweight implementation of the Python 3 programming language that is designed to run on MCUs.
ulab - Numpy and Scipy to Micropython

Experimental Results

$\gamma = 2\sigma$, $\delta = 0.94$, $N = 5$, $M = 5$, $T = 5000$, $R = 50$
Experimental Results
Experimental Results
Experimental Results

\[y = 2\sigma, \ \delta = 0.94, N = 10, M = 5, T = 500, R = 50 \]
Fog and Edge Computing

Fog Computing

Preprocessing → Sensor Data

Sensor Data → TinyML Anomaly Detection (TADE)

TinyML Anomaly Detection (TADE) → MQTT Publisher
Fog and Edge Computing
The individual learning parameters (the same kind of equipment and sensor) can be combined (Ensemble Learning). The final model can run on Edge Device.
Thanks

Questions?
eduardo.spereira@sp.senai.br
Copyright Notice

This multimedia file is copyright © 2023 by tinyML Foundation. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML Foundation.

www.tinyml.org
Copyright Notice

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org