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The Dawn of On Device Learning in TinyML

' The goal of On Device Learning (ODL)
IS to make edge devices “smarter” and
more efficient by observing changes in
the data collected and self-
adjusting/reconfiguring the device’s
operating model. Optionally the
‘*knowledge” gained by the device Is
" shared with other deployed devices.

>

' \\\ Danilo Pau, Elias Fallon, Evgeni Gousev, Davis
= \\:\ y Sawyer, Ira Feldman, Christopher B. Rogers
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tinyML On Device Learning Forum

WL 8/31-9/1, 2022 Online

On device learning Forum

Accademia on 8/31/2022

On-Device Learning Under 256KB Memory, Song HAN, Assistant Professor, MIT EECS

Neural Network ODL for Wireless Sensor Nodes ,Hiroki MATSUTANI, Professor, Keio University

Scalable, Heterogeneity-Aware and Trustworthy Federated Learning, Yiran CHEN, Professor, Duke University
On-Device Learning For Natural Language Processing with BERT, Warren J. GROSS, Professor, McGill University
Is on-device learning the next “big thing” in TinyML? Manuel ROVERI, Associate Professor, Politecnico di Milano
ODL Professors Panel

Industry on 9/1/2022

TinyML ODL in industrial 10T, Haoyu REN, PhD Student, Technical University of Munich/Siemens

NeuroMem® wearable, hardwired sub milliwatt real time machine learning with wholly parallel access to “neuron memories”
fully explainable, Guy PAILLET, Co-founder, General Vision

Using Coral Dev Board Micro for ODL innovations, Bill LUAN, Senior Program Manager, Google

Platform for Next Generation Analog Al Hardware Acceleration, Kaoutar EL MAGHRAOQUI, Principal Research Scientist, IBM T.J
Watson Research Center

Enabling on-device learning at scale, Joseph SORIAGA, Sr. Director of Technology, Qualcomm
Training models on tiny edge devices, Valeria TOMASELLI, Senior Engineer, STMicroelectronics

https://www.tinyml.org/event/on-device-learning/


https://www.youtube.com/watch?v=yboIhr_lamY
https://www.youtube.com/watch?v=yALM_8v6beM
https://www.youtube.com/watch?v=T1EG_ApvWLw
https://www.youtube.com/watch?v=ERLFRluwRjA
https://www.youtube.com/watch?v=ElFBTnx7aG4
https://www.youtube.com/watch?v=4rmUpJzEYkQ
https://www.youtube.com/watch?v=N2vZmvfmDUw
https://www.youtube.com/watch?v=HZxhNg5nB6w
https://www.youtube.com/watch?v=HZxhNg5nB6w
https://www.youtube.com/watch?v=P6IzKx4DWvk
https://www.youtube.com/watch?v=nuamzjBnIf8&t=216s
https://www.youtube.com/watch?v=Gla2cfFfDjI&t=204s
https://www.youtube.com/watch?v=qKbAACzCWWQ

tinyML EMEA Forum - On Device Learning
fijee 9/12, 2022 Cyprus, In person

On device learning Forum

A framework of algorithms and associated tool for on-device tiny learning, Danilo PAU, Technical Director, IEEE and
ST Fellow, STMicroelectronics

In Sensor and On-device Tiny Learning for Next Generation of Smart Sensors Michele MAGNO, Head of the Project-
based learning Center, ETH Zurich, D-ITET

Continual On-device Learning on Multi- Core RISC-V MicroControllers Manuele RUSCI, Embedded Machine Learning
Engineer, Greenwaves

¢ On-device continuous event-driven deep learning to avoid model drift, Bijan MOHAMMADI, CSO, Bondzai

https://www.tinyml.org/event/on-device-learning/


https://www.youtube.com/watch?v=q9s8-Qln7sE
https://www.youtube.com/watch?v=EVE06-OHH5U
https://www.youtube.com/watch?v=FiP48Za9ElM
https://www.youtube.com/watch?v=y75eGIQqGfY
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On Device Learning Forum 2023, May 16 2023

8:00 - 8:10 Opening remarks by Danilo Pau

8:10 - 8:40 Charlotte Frenkel "Merging insights from artificial and biological neural networks for
neuromorphic edge intelligence"

8:40 - 9:40 Giorgia Dellaferrera "Forward Learning with Top-Down Feedback: Solving the Credit
Assignment Problem without a Backward Pass"

9:40 - 10:10 Guy Paillet "NeuroMem®, Ultra Low Power hardwired incremental learning and
parallel pattern recognition”

10:10 - 10:40 Aida Todri-Sanial "On-Chip Learning and Implementation Challenges with
Oscillatory Neural Networks"

10:40 - 11:10 Eduardo S. Pereira “Online Learning TinyML for Anomaly Detection Based on
Extreme Values Theory”

11:10 - 11:15 Closing remarks by Danilo Pau

Pacific Time
Kys
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Thank you, tinyML Strategic Partners,
m& for committing to take tinyML to the next Level, together

On device learning Forum
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Executive Strategic Partners




On device learning Foru

EDGE IMPULSE

The Leading Development
Platform for Edge ML



Qualcomnm
Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Perception
Object detection, speech
recognition, contextual fusion
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Edge cloud
Reasoning
Scene understanding, language
understanding, behavior prediction
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Action
Reinforcement learning C|Oud

for decision making
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Accelerate Your Edge Compute

SYNTIANT

. ~ Maklngv\Edge Al A Reality *



http://www.syntiant.com/
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

éE\%é%g Where what if
becomes whatis.
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Easily deploy your
tinyML solutions with
Arduino Pro

arduino.cc/pro
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© 2022 Arm

Powerlng tinyML Innovatlon

',.,~Arm Al Virtual Tech_

Talks

The latestin Al trends technologles & best
- practices from Arm and our Ecosystem
- :Pa'r‘t-ners.

-Demos, code examples, workshops, panel

. sesslonsand much more' ..

| | FortnlghtIyTuesday @ 4pm GMT/8am PT

Find out more:
- www.arm.com/techtalks -




Decarbonization | . pigitalization

Driving decarbonization and digitalization. Together.

Infineon serving all target markets as -
Leader in Power Systems and loT (I"fineon

www.infineon.com
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lytics Toolkit Suite

sensiml.com/tinyML
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STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy

o
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Silver Strategic Partners

On device learning Forum
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Join Growing tinyML Communities:

14.7k members in
47 Groups in 39 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members
&
11.6k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/

ETHIEe


https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/

On device learning Forum

Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)
www.youtube.com/tinyML

£ YouTube

tinyML 9.4k subscribers, 559 videos with 327k views

4.33K subscribers

HOME VIDEOS PLAYLISTS COMMUNITY CHANNELS ABOUT Q
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106 views - 4 days ago 138 views * 4 days ago 54 views + 4 days ago 47 views * 4 days ago 132 views * 4 days ago 137 views * 4 days ago

Join the tinyML
Challenge!

tinyML Smart Weather  tinyML Talks tinyML Talks tinyML Talks tinyML Smart Weather  tinyML Trailblazers
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351 views * 462 views * SZVIEWSS 133 views * 287 views * 336 views *
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http://www.youtube.com/tinyML
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June 26 -28,2023
Amsterdam =

EMEA 2023
https://www.tinyml.org/event/emea-2023

More sponsorships are available: sponsorships@tinyML.org



https://www.tinyml.org/event/emea-2023
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@& Reminders

On device learning Forum

Slides & Videos will be posted Please use the Q&A window for your

tomorrow questions

PDF
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Haise Hand

tinyml.org/forums youtube.com/tinyml
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On device learning Forum

Giorgia Dellaferrera

Giorgia Dellaferrera has completed her PhD in computational
neuroscience at the Institute of Neuroinformatics (ETH Zurich
and the University of Zurich) and IBM Research Zurich with Prof.
Indiveri, Prof. Eleftheriou and Dr. Pantazi. Her doctoral thesis
focused on the interplay between neuroscience and artificial
intelligence, with an emphasis on learning mechanisms in brains
and machines. During her PhD, she visited the lab of Prof.
Kreiman at the Harvard Medical School (US), where she
developed a biologically inspired training strategy for artificial
neural networks. Before her PhD, Giorgia obtained a master in
Applied Physics at the Swiss Federal Institute of Technology
Lausanne (EPFL) and worked as an intern at the Okinawa
Institute of Science and Technology, Logitech, Imperial College
London, and EPFL.
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Dellaferrera & Kreiman, ICML 2022 NS |
“Srinivasan, Mignacco, Sorbaro, Cooper, Refinetti, Kreiman, |
Dellaferrera, 2023 (arXiv:2302.05440 )




Connecting the puzzle pieces of bio-inspited learning algorithms

Update
locking!

Weight
symmetry!

Activity is
frozen!

Biologically
unrealistic!

—— COMMENTARY

The recent excitement about neural networks

Backpropagation and the brain

Timothy P Lillicrap(®, Adam Santoro, Luke Marris, Colin J. Akerman and
Geoffrey Hinton

Theories of Error Back-Propagation in
the Brain

James C.R. Whittington™? and Rafal Bogacz'*

32



Connecting the puzzle pieces of bio-inspired learning algorithms



Connecting the puzzle pieces of bio-inspired learning algorithms

=)

FF

Today: 9 am PT Today: 9.45am PT y |



»

»

»

»

Outline

Neuro-inspired Al
* Why Backpropagation is biologically implausible A WM
* Overview of alternative solutions to credit assignment

PEPITA: error-driven input modulation

* Replacing the backward pass with a second forward pass

* Results on image classification tasks PEPITA
* Soft alignment dynamics

* Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization
* Improving alignment with weight mirroring

Forward-Forward algorithm
* Idea and results FF
* Similarities with PEPITA's update rule

Forward learning with top-down feedback
* Biological considerations

WM WM@

FA PEPITA FF

. ..., |



Outline

» Neuro-inspired Al
* Why Backpropagation is biologically implausible
* Overview of alternative solutions to credit assignment

A



Backpropagation: successful but not biologically plausible

» Success
* The most effective training algorithm
* State-of-the-art performance in complex cognitive tasks J o I8 g

» Algorithm
* Chain rule of calculus

* Change in synaptic strength <« change of network’s error

Lietal., 201 37 I
Rumelhartetal.,, 1989  Crick, 1989 Lillicrap et al., 2020 ’



Glossary

» Target (t)
* Desired output of a network

» Error (e)

* Deviation of the network’s output from the target Y[ OLOLOL® O]
W, |
» Weights (W) h2[ OO0 00 O]
* Parameter corresponding to the strength of the connection between two -
nodes WZI
w, ]

38



The backpropagation algorithm

» Forward pass
* Network’s response to input
* Errorfunction e=y—t

* Weight updates proportional to its negative
gradient

» Backward pass
* Error signal flows backward through the network
* Computed recursively via the chain rule
* Update phase

t — O — e

|

y(OO OO O]

WSI

Mielolorere]
WZI

h, LOO O O O]
w,]

x (OO O OO

Lillicrap et al., 2020

39



I Backpropagation of the error is not biologically plausible

BP
t —0O-— e » Weight transport problem
T i * Symmetric weights for forward and backward computation
y(OO O OO] . .
W W » Non-local information used for the updates
31{ J, 3 * Global error and downstream weights needed for learning
h, LOO O O O]
W ] ‘ W » Frozen activity during error propagation and parameter updates
2 v o2 » Separate forward and backward computation
h (OO OO O]
W I » Update locking problem
1 * Backward computation needs to be complete before the next forward pass
x (0000 @

Rumelhart et al., 1995

Alternative Training Schemes .
Lillicrap et al., 2020




I Alternatives to BP: relaxing symmetty requirements

BP

t — o0 — e

Rumelhart et al., 1995

42



Alternatives to BP: relaxing symmetty requitements

BP

Rumelhart et al., 1995

FA

t — O — e

|

y(OO O OO
wi| | .
h, LOO OO O]
wi| |8
h, (OO OO 0]

w|
x LOO OO0 O]

Lillicrap et al., 2016

90°

Opa £dgp

0 1,000 2,000
No. examples
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Alternatives to BP: relaxing symmetty requitements

BP FA +WM . .
t © © t —O-— ¢ L« W8 = 7 -
O g e

y y (OO O O O] "2 . "2 "
WST lBZ /'r

h, h, (OO O OO}
w,[ | B,

h, HieYererere)
WJ \5

X x (OO0 OO0

Rumelhart et al., 1995 Lillicrap et al., 2016 Akrout et al., 2019 »



Alternatives to BP: relaxing symmetty requitements

BP FA DFA
t © e t © = t —»Q—pT
y y y (OO OO O]
WSH B,
h; h; hz[OOOOO|"—
Al B.
h, h. h1[OOOOO"
w, |
X X X[OOOOOJ

Rumelhart et al., 1995 Lillicrap et al., 2016 A. Nokland, 2016



BP

t 60— e

Rumelhart et al., 1995

I Alternatives to BP: relaxing symmetty requirements

FA

t — O — e

y&IlII)

Wi | B
fjielererere)

w| |8

Lillicrap et al., 2016

A. Nokland, 2016

46



I The Backward Pass

The backward pass implies:
» Weight updates relying on non-local information
» Freezing activity for the update phase

» At least partial update locking

U

Remove the backward pass

FORWARD-ONLY LEARNING
t —- QO — e

T

y(OO O OO
WSI

h, OO O OO}
D

h, (OO OO O0)
W, ]
x (OO0 0 O00]

Dellaferrera & Kreiman, ICML (2022)
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The Backward Pass

»  PEPITA: Top down
feedback connections

PEPITA

t — QO —e

T
y(OOOOO)
WSI
h, (OO OO0
WJ
h, OO OO0}
W, |

Jiele el 010}
®

» FF: Input sample
corruption

Forward-Forward

y—be—be

!

y (OO O0OO0]

v

n (OO0 O0O0O0]

]

» QO O0OO0]

05 Xmod T Xneg

2N
Xelean = xp

FORWARD-ONLY LEARNING

t —O0—¢€

T

y(OO O OO
WJ

h, OO O OO}
w,| X

h, (OO OO O0)
W, ]
x (OO0 0 O00]

Dellaferrera & Kreiman, ICML (2022)
Hinton, 2022
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»

Outline

PEPITA: error-driven input modulation

Replacing the backward pass with a second forward pass

Results on image classification tasks PEPITA
Soft alignment dynamics

Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization
Improving alignment with weight mirroring



The PEPITA learning rule

M

PEPITA = Present the Error to Perturb the Input To modulate Activity

Substitutes the standard Forward+Backward scheme with two Forward Passes
* Standard Forward pass = same as for standard algorithms
* Modulated Forward pass = input is modulated by the error

F = projection matrix to add the error onto the input

Update relies on difference of activations between Standard and Modulated pass

PEPITA

t — O — e

|

y(OO OOO)

WSI

h, (OO OO O]
WJ

h, (OO OO0
w,]

x[O‘OOOO}

®

5OI



The PEPITA learning rule for Fully Connected Neural Networks

» PEPITA = Present the Error to Perturb the Input To modulate Activity

Algorithm 1 Implementation of PEPITA

Given: Input (x) and label (target)

#standard forward pass

hg =X

for/=1, ..., L Y
he = op(Wehe—1)

e = hp— target » Presentthe Error ... :
#modulated forward pass Lo-2

A

herr = x+Fe 1 » ...to Perturb the Input...
fﬂl'f = 1 L rms=———-1
he"""" = Jg(Wghe"""" ) 4 » ... Tomodulate Activity i__’}ff _____
1f€ <L. '
AWE _. (h£ efr*r)i (her?‘ )
else: T x+Fe
AW, = e - (hg™)T -

PEPITA

t — O — e

|




Testing PEPITA on image classification tasks - experimental results

Results for PEPIT PEPITA

In some tasks, PE
PEPITA always ot

The PEPITA conv
Useful 2D featu

-
—

PEPITA

WJ % F=0
RP k=0.01
h, (OO OO 0] ] RP k=0.1
1 W I RP k=1
Architecture: lelelelele)
1 hidden layer + ® 0 20 40 60 80 100
1 Output |ayer Training epochs
FULLY CONNECTED MODE;S/ ’ CONVOLUTIONAL MODELS
MNIST CIFARI10 ‘/CIFARIOO | MNIST CIFARI10 CIFAR100
BP
FA
DRTP

PEPITA | 98.01+0.09 52.57+0.36 }98.29:&0.13 56.33+£1.35




Why it works: soft-antialighment

» Soft-antialignment
* Angle between

projection matrix F and
* product between the forward weight matrices

* Evolution during learning = soft antialignment
* Analytically proven for one-hidden layer linear network

PEPITA

t — O — e

|

y(OO O OO

WJ

h, [OTOIOIOK |
w, |

x (00000

®

o Accuracy [/%]

A F W W,

0.98-
0.96
0.94
10 20 30 40 50
120-
100+
10 20 30 40 50

Training epochs

53



Approximating PEPITA to an Adaptive Feedback Alignment algorithm

» First order Taylor expansion AW, = (he — hg’f‘r) . (hﬁirl)T FA' PEPITA
f(a+h) =~ f(a) + hf'(a)
hi—h{" = o1 (Wiz) — o1 (Wy(x — Fe)) =
— (Il(VVlf}’}) — Jl([’]["’rlilf - I’VLFE)) =
~ o (Wix) — [01(Wi(r)) — WiFed|(Wix)] =
. ! 7 —
= W1 Feoy(Wyx) MNIST
— I/VlFehi.
E—
FA 96
AFA = Adaptive (W) Feedback Alignment g ” f
< x
X . PEPITA
92 x  AFA
0 25 50 75 100 54

Training epochs



Improving PEPITA’s alignment with weight mirroring

FA' PEPITA

WM
?
PEPITA
WM

FA

50



I Improving PEPITA’s alignment with weight mirroring

WM

SRS
/ AFQZTZFé-TT

a FA b PEPITA
y —>0O—e r y — QO —e
I el I
y (OO O000) y (OO 000
Wzn F, qu
n (OO0 0O00] lelelelele)
w, | \f w, |
+ (OO0 O000) *x (OO0 0 0Q0]
2 AR
x Xetean = X Xpmoa = X —Fe

C PEPITA+WM

y—b@—be

1|

i

y (OO0 O0O]

W, I F, :

e e onons 1 (OO
" WJ F, :5

« (OO0

Vel

Xelean = X Xmod = x — Fe

T

F = F,F,



Improving PEPITA’s alignment with weight mirroring

Architecture:
1 hidden layer +
1 output layer

100

80

60

AL FWLiW,

40

20

~——— PEPITA normal
PEPITA+WM no preM
—— PEPITA+WM with preM

25 50
Training epochs

75

100

< Note: the signiis flipped x®"=x-Fe

W. DECAY NORM.

PEPITA X

> XX X

WX X | XX

MIRROR |

W N X X X

MNIST

98.02+0.08
98.12+0.08
98.41+0.08
98.05+0.08
98.10+0.12
98.42+0.05

CIFARI10

52.45+0.25
53.05+0.23
53.5140.23
52.63+0.30
53.46+0.26
53.80+0.25

CIFAR100

24.6940.17
24.86+0.18
22.8740.25
27.07+0.11
27.04+0.19
24.20+0.36
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Training deeper fully connected models

» Adding activation normalization allows to train up to 6 layer networks

a MNIST b CIFARI10
100
70
98
—_ = 60
2 3
5 % z
g g 50 ]
g 94 3
< < 40
92
30
90
1 2 3 4 5 1 2 3 4 5
# Hidden layers # Hidden layers

Accuracy [%]

()

o
o

5]
o

]
o

-
o

CIFAR100

3
# Hidden layers

4
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I Outline

» Forward-Forward algorithm
* Idea and results
* Similarities with PEPITA's update rule

FF



The Forward-Forward algorithm PEPITA FF

Two forward passes per sample:
* the positive pass operate on real data

* the negative pass operates on “negative data” Forward-Forward
In the positive pass: ¥ b () —ag
* weights updated to increase the goodness in hidden layers T
In the negative pass: 9 [ OO OO0 ]
* weights updated to decrease the goodness in hidden layers

w, |

.One measure of goodness 3 [O OO0 O]

sum of the squared neural activities

w, |
Alelererere’
Xclean = xpo/: \xm

od = Xneg



PEPITA: weight update equivalent to the Forward-Forward framework

Forward-Forward framework Equivalence of weight update
» Goodness as the sum of squared neural activities 19J, 1 [0|h? 8\|h"-’*""""\|2

* ||k for the positive pass and 2 8Wg T2 ( oWy oW, )

* ||rg""|1? for the negative pass. 8||O'(Wgh£_1)||2 3||U(W her )”2
» Local loss function J, for layer | = the sum of ~ 9 ( oW, oW, )

loss function of the positive pass J* and
loss function of the negative pass J7

, = o(Wihi—1) ® o' (Wehg—1)hy_,
Jo = ||he® = 1R |12

- O_(ther:r‘ ) or; (Wﬁhe:r‘:r‘ )her?‘—l—

= (o' (Wehe—1) © hehy_, 9)
. (Wﬁherr ) ® he T:r‘her'r)

_ (hé ® hf)hg_l (her:r‘ o he:r‘r)he*r*r—l—‘

If ReLU non-linearity:

1 0.J,

- —h h o herrher?‘—l—
2 OW, £he-1 ¢



I The Hebbian modification of PEPITA

Algorithm 1 Implementation of PEPITA

Given: Input (x) and label (targer)
#standard forward pass
h:} =X
fori=1,..L
he = oe(Wehe_1)
e = hy— target
#modulated forward pass
hi'™ = x+Fe
forf=1,..L
hgTT = e (Wehs™,
if £ < L:

535

o
w
=}

Accuracy [%]

o
N
(]

52.0

—}— PEPITA uniform
—}— PEPITA normal

2

PEPITA_Hebbian

# Hidden layers

AWe = (he — hg™) - (k)T ——> AW, = hy - g

else:

AW, =e- (hg)T
#apply update
We(t + 1) = We(t) — nAW,

f—1

—h

err h errT
s

¢ -1

~ T err errl
— hf * hjffl — h’f] * h‘f—]

T

1°t pass

T

2"d pass
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PEPITA: weight update equivalent to the Forward-Forward framework

Forward-Forward framework Equivalence of weight update
» Goodness as the sum of squared neural activities 1 9.J, 1 [ 9||he||? 8\|h"-’*""""\|2
* h? for the positive pass and 2 8Wg T2 ( oW, oW, )
* (he™)?for the negative pass. 8||O'(Wghg_1)”2 || (W hﬁ"””i)l\g
» Local loss function J, for layer | = the sum of ~ 9 ( aw, aw, )

* loss function of the positive pass J*;and
* loss function of the negative pass J

, = o(Wihi—1) ® o' (Wehg—1)hy_,
Jo = ||he® = 1R |12

- O_(ther:r‘ ) or; (Wﬁhe:r‘:r‘ )her?‘—l—

= (0'(Wihe—1) © hehy_, 9)
. (Wﬁherr ) ® h;r’rherr )

_ (hé ® hf)hg_l (her:r‘ o he:r‘r)he*r*r—l—‘

PEPITA- Hebbian If ReLU non-linearity:
AIVp — hf hF’I’IT herr hETTT 1 8J£

~hy-hl_, —h§" RS 2 oWy

_ hghf - hgrrher?‘—l—




Differences between PEPITA and FF

» Method to generate the modulated sample

« PEPITA - add error = top-down feedback b PEPITA d Forward-Forward
* FF - hybrid mask

y—b@—be
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Differences between PEPITA and FF

» Method to generate the modulated sample

PEPITA = add error = top-down feedback b PEPITA d
FF = hybrid mask

Forward-Forward

y —* @ — e B S @ — e
» PEPITA does not maximize (resp. minimize) T l T
the activations squared in the clean (resp. ~ R
module?t/edl)passqU " y [O O O O OJ b4 [O (OO O]
v | v, |
. | w OO0+ & OO0
: |||||| Wi [ W, I
25 ||
;. | Hieleielele) » ([OOOI0I08
. f.l'll lll'ul Xclean = x/’ Kxnwd = x(tgpe Xclean = xpo/: \xmod = xneg
Iy -

0
=-0,15 -0.10 -0,05 0,00 0,05 0,10 0,15
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»

»

»

Differences between PEPITA and FF

Method to generate the modulated sample
PEPITA = add error = top-down feedback
FF = hybrid mask

PEPITA does not maximize (resp. minimize)
the activations squared in the clean (resp.
modulated) pass

Note: FF chooses a loss based on the logistic
function applied to the goodness, minus a
threshold = analytical differences

p=o0 (||h;||2 —0)

b

d Forward-Forward

y—b@—be

T
y (OO 0O000)

|

n (OO0 0O000)

il

Alelererere)
X

Xclean = Xpos Xmod = Xneg




I Outline

» Forward learning with top-down feedback
* Biological considerations



PEPITA solves the biologically implausible aspects of BP

AW, =
WEIGHT-TRANSPORT-FREE
LOCAL RULE

FREEZING OF ACTIVITY

UPDATE-UNLOCKED

_(W£115ﬂf+1) © ff(a—f)hi;—l
x
x

x

_(33'15Q£+1) ©) f'(a#)hrgﬂ
v
X

x

~(Bte) O f'(ap)hp4
v
x
x

PARTIALLY

d

PEPITA &FF

t —»Q-—»€

||

(he—h5"™) - (hGTL1)
v
v
v
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Analysis of PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix
* Reminiscent of cortico-thalamo-cortical loops

Striatum

Thalamus

Brainstem

In the thalamus:

- Thalamocortical (TC) neurons
Excitatory neurons in the neocortex:
- Intratelencephalic (IT)

- Pyramidal tract (PT)

Spinal cord

Shepherd & Yamawaki, 2021
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Analysis of PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix
* Reminiscent of cortico-thalamo-cortical loops

» Storing of the activation of the Standard pass until the Modulated pass

e Can be implemented in biological neurons through mismatch between
dendritic and somatic activity

x+Fe

v* Stores 2" pass
DI V| < sz

mismatch

- 1] Stores 15t pass
b(0 st

Asabuki & Fukai, 2020 77



Summary and Outlook

» PEPITA and FF

* Are novel training schemes relying only on forward computations

* Solve weight transport, freezing of neural activity, non-local weight updates and backward locking
* Achieve performance on-par with FA on simple image classification tasks

* PEPITA and FF share the same principles for the weight updates

* PEPITA can be approximated to an Adaptive Feedback Alignment

» Challenges

* Performance does not improve with depth WM WM @
* Residual connection, intermediate error-driven modulation, training the F matrix
» Promising avenues for exploration FA PEPITA FF

* PEPITA is not gradient-based: could it be more robust to gradient-based adversarial attacks?
* Application to object recognition on videos:

* Consecutive frames need only one forward pass
* Implementation in unconventional physical analog hardware
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Coding tutorial: Implementing PEPITA with Pytorch 1/11

» Today = Code (ICML 2022): https://github.com/GiorgiaD/PEPITA

» Code with Pytorch lightning (arXiv:2302.05440 ):
https://drive.google.com/drive/u/a/folders/awgHqtZx2NVuxpdjQuYUVV{1A8v-880FS

H GiorgiaD / PEPITA  Public

<> Code () Issues 17 Pullrequests () Actions [ Projects [0 Wiki @ Security |~ Insights 3 Settings

¥ main ~  PEPITA / Tutorial_PEPITA_FullyConnectedNets_CIFAR-10.ipynb


https://github.com/GiorgiaD/PEPITA
https://drive.google.com/drive/u/1/folders/1wqHqtZx2NVuxpdjQuYUVVf1A8v-88oFS

I Coding tutorial: Implementing PEPITA with Pytorch 1/11

Import libraries

In [1]: # import torch libraries
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable

# 1import other Libraries

import numpy as np

import matplotlib.pyplot as plt
import copy



I Coding tutorial: Implementing PEPITA with Pytorch 2/11

Define Network architecture

In [2]: # models with Dropout
class NetFC1x1824D0Ocust(nn.Module):
def init (self):
super(). 1init ()
self.fcl = nn.Linear(32%32%3,1024,bias=False)
self.fc2 = nn.Linear(1024, 10,bias=False)

# initialize the layers using the He uniform initialization scheme

fcl nin = 32%32*%3 # Note: if dataset is MNIST --> fcl nin = 28%28%*1
fcl limit = np.sqrt(6.@ / fcl nin)

torch.nn.init.uniform (self.fcl.weight, a=-fc1l limit, b=fcl limit)

fc2 nin = 1024

fc2 limit = np.sqrt(6.e / fc2 nin)

torch.nn.init.uniform (self.fc2.weight, a=-fc2 limit, b=fc2 limit)

def forward(self, x, do masks):
X = F.relu(self.fcl(x))
# apply dropout --> we use a custom dropout implementation because we nes
if do masks is not None:
X = x * do masks[@]
X = F.softmax(self.fc2(x))
return x



I Coding tutorial: Implementing PEPITA with Pytorch 3/11

Set hyperparameters and train+test the model

In [3]: # set hyperparameters
## Learning rate
eta = 9.01
eta decay = 0.1
eta decay epochs = [60,90]
## number of epochs
num epochs = 3
## dropout keep rate
keep rate = 8.9
## loss --> used to monitor performance, but not for parameter updates (PEPITA du
criterion = nn.CrosskEntropyLoss()
## optimizer (choose 'SGD' o 'mom’)
optim = 'mom’' # --> default in the paper

if optim == 'sGD’:
gamma = @

elif optim == "mom’:
gamma = 0.9

## batch size
batch size = 64 # --> default in the paper

1 k



I Coding tutorial: Implementing PEPITA with Pytorch 4/11

In [4]:

In [5]:

# initialize the network
net = NetFC1x1824D0cust()

# define B --> this 1s the F projection matrix in the paper (here named B becaust
nin = 32%32%3

sd = np.sqgrt(6/nin)

B = (torch.rand(nin,10)*2*sd-sd)*8.05 # B is initialized with the He uniform in

4

# Load the dataset - CIFAR-1@
transform = transforms.Compose(
[transforms.ToTensor()]) # this normalizes to [@,1]
trainset = torchvision.datasets.CIFAR1@(root="./data’, train=True,

download=True, transform=transform)
trainloader = torch.utils.data.Dataloader(trainset, batch size=batch size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR1@(root="./data’, train=False,

download=True, transform=transform)
testloader = torch.utils.data.Dataloader(testset, batch size=batch size,

shuffle=False, num workers=2)

Files already downloaded and verified
Files already downloaded and verified



I Coding tutorial: Implementing PEPITA with Pytorch 5/11

In [7]:

# define function to register the activations --> we need this to compare the ac
activation = {}
def get activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
for name, layer in net.named modules():
layer.register forward hook(get activation(name))

4

# do one forward pass to get the activation size needed for setting up the dropoi
dataiter = iter(trainloader)
images, labels = next(dataiter)
images = torch.flatten(images, 1) # flatten all dimensions except batch
outputs = net(images,do masks=None)
layers act = []
for key in activation:

if "fc' in key or 'conv' in key:

layers act.append(F.relu(activation[key]))



I Coding tutorial: Implementing PEPITA with Pytorch 6/11

In [9]: # set up for momentum

if optim == 'mom"’:
gamma = 0.9
v w all = []

for 1 idx,w in enumerate(net.parameters()):
if len(w.shape)>1:
with torch.no grad():
v_w all.append(torch.zeros(w.shape))

In [1@]: # Train and test the model
test accs = []

for epoch in range(num epochs): # loop over the dataset multiple times

# learning rate decay
if epoch in eta decay epochs:
eta = eta*eta decay
print('eta decreased to ',eta)

# Loop over batches
running_loss = 0.0
for 1, data in enumerate(trainloader, 8):
# get the inputs; data is a List of [inputs, labels]
inputs, target = data
inputs = torch.flatten(inputs, 1) # flatten all dimensions except batch
target onehot = F.one hot(target,num classes=10)



I Coding tutorial: Implementing PEPITA with Pytorch 7/11

# create dropout mask for the two forward passes --> we need to use the .
do masks = []
if keep rate < 1:
for 1 in layers act[:-1]:
inputl = 1
do mask = variable(torch.ones(inputs.shape[@],inputl.data.new(in
do_masks.append(do mask)
do masks.append(1) # for the last layer we don't use dropout --> jus

# forward pass 1 with original input --> keep track of activations

outputs = net(inputs,do masks)

layers act = []

cnt_act = 9

for key in activation:

if "fc' in key or 'conv' in key:

layers act.append(F.relu(activation[key])* do masks[cnt act]) # |
cnt_act += 1

# compute the error
error = outputs - target onehot

# modify the input with the error
error_input = error @ B.T
mod inputs = inputs + error_input



I Coding tutorial: Implementing PEPITA with Pytorch 8/11

# forward pass 2 with modified input --> keep track of modulated activat

mod outputs = net(mod inputs,do masks)

mod layers act = []

cnt_act = @

for key in activation:

if "fc' in key or ‘conv' in key:

mod layers act.append(F.relu(activation[key])* do masks[cnt act]
cnt_act += 1

mod_error = mod outputs - target onehot



I Coding tutorial: Implementing PEPITA with Pytorch 9/11

# compute the delta w for the batch
delta w all = []

vV W
for

for

=[]
1 idx,w in enumerate(net.parameters()):
v_w.append(torch.zeros(w.shape))

1 in range(len(layers_act)):

# update for the lLast Layer
if 1 == len(layers_act)-1:

if len(layers act)»1: # if network has more than one Layer

delta w = -mod_error.T @ mod layers_act[-2]
else: # if only one layer network
delta w = -mod _error.T @ mod inputs

# update for the first layer
elif 1 == o:
delta w = -(layers _act[1l] - mod layers act[1l]).T @ mod inputs

# update for the hidden layers (not first, not Llast)
elif 1>0 and l<len(layers act)-1:

delta w = -(layers act[l] - mod layers act[l]).T @ mod layers ac

delta w all.append(delta w)




I Coding tutorial: Implementing PEPITA with Pytorch 10/11

# apply the weight change
if optim == 'sGD': # if SGD without momentum
for 1 idx,w in enumerate(net.parameters()):
with torch.no grad():
w += eta * delta w all[l idx]/batch size # specify for which

elif optim == 'mom’: # 1if SGD with momentum
for 1 i1dx,w in enumerate(net.parameters()):
with torch.no_grad():|
v w all[l idx] = gamma * v_w _all[l idx] + eta * delta w all[
w+= v w all[l idx]

# keep track of the loss
loss = criterion(outputs, target)
# print statistics
running_ loss += loss.item()
if i%500 == 499:
print(’[%d, %5d] loss: %.3f" %
(epoch + 1, 1 + 1, running_loss / 500))
running loss = 0.0




I Coding tutorial: Implementing PEPITA with Pytorch 11/11

print( 'Testing...")
correct = ©
total = @
# since we're not training, we don't need to calculate the gradients for our
with torch.no grad():
for test data in testloader:
test images, test labels = test data
test images = torch.flatten(test images, 1) # flatten all dimensions
# calculate outputs by running images through the network
test outputs = net(test images,do masks=None)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(test outputs.data, 1)
total += test labels.size(0)
correct += (predicted == test labels).sum().item()

print( 'Test accuracy epoch {}: {} % .format(epoch, 100 * correct / total))
test accs.append(10@ * correct / total)

print( 'Finished Training')




I Alternatives to BP: relaxing symmetty requitements

BP
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Alternatives to BP: relaxing symmetty requitements

Rumelhart et al., 1995

FA

t 0 — €

|

ylOO OO0
wi| |8,
Alelelelere)
wo| |8,
h, L OO OO O

w|
x L OO O 00O

Lillicrap et al., 2016
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Alternatives to BP: relaxing symmetty requitements

Rumelhart et al., 1995

FA

Lillicrap et al., 2016

DFA
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A. Nokland, 2016
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Alternatives to BP: relaxing symmetty requitements

BP FA DFA DRTP
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Rumelhart et al., 1995 Lillicrap et al., 2016 A. Nokland, 2016 Frenkeletal., 2019 I



I Alternatives to BP: relaxing symmetty requirements

BP

t — o0 — e

Rumelhart et al., 1995

FA

Lillicrap et al., 2016

DFA
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| .

A. Nokland, 2016

DRTP
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The backpropagation algorithm

» Forward pass
* Network’s response to input
* Errorfunction e=y—t

* Weight updates proportional to its negative
gradient

» Backward pass
* Error signal flows backward through the network
* Computed recursively via the chain rule
* Update phase

t — O — e

|

y(OO OOO]
WSI

h, (OO OO0
WZI

h, LOO O O O]
W |

x (OO O 00

Lillicrap et al., 2020
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I The Backward Pass

The backward pass implies:
» Non-locality
» Frozen activity

» At least partial update locking

U

Remove the backward pass

PEPITA
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Dellaferrera & Kreiman, ICML 2022
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Test curves on CIFAR-10
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Error-based modulation is key for good performance
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I Weight distribution after training

» Wider weight distribution

* PEPITA learns different solutions compared to BP La0o) — Normal i
. . . P B student-t {
* Sub exponential distribution 12001 BP: W,
3 1000 - |
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I Weight disttibution — heavy tailed
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I Analysis of PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix

response gain control response gain control

mAChRs activation

5-HT2A activation
Adjustment of response magnitude

Optimization of response magnitude

1

Response
Response

mAChRs
activation

Contrast
Contrast Input layer
S-HT1B
nAChRs activation
5-HT1B activation Enhancement of detectability
Enhancement of retinal image contrast and discriminability
b L
& w
g g o
& =3
2 g
5 o
Noise

oy

Contrast

b @

Contrast

Visual stimlus

Shimegietal., 2016



Alternatives to BP: Sign symmetry

» Asymmetric backpropagation BP Sign-concordant Feedback
Sign-concordant Feedback ¢ _’? . T ¢ _‘? . T
» Relaxwelght symmetry requu.'ement y[ olelele O] y[ olelele O]
* the magnitudes of feedback weights do not matter to
performance WSI J'WBT WJ J' sign(Ws)-|B|

* the signs of feedback weights do matter —

the more concordant signs between feedforward and h2I O O O O O] hz[ O O O O O]

their corresponding feedback connection
w | wr W, | signw,) B
w] w,|

x OO O OO0 x LOO O O 0]

Liao et al., 2016 |
. 99
Xiao et al., 2019



»

»

»

Alternatives to BP: Feedback Alignhment

Precise symmetric connectivity between connected
layers is not required to obtain quick learning

Replaces W7 with a matrix of fixed random weights B

* Each neuronin the hidden layer receives a random
projection of the error vector

* Avoids all transport of synaptic weight information c

The circuit learns by encouraging a soft alignment of
W with B”

* The angle between modulator vectors prescribed by
feedback alignment and backprop decreases

* As Waligns with B’, B begins to act like W', sending useful
teaching signals to the hidden units

90°

Opa £dpp

0 1,000 2,000

No. examples
b
f\
w
Wo _— >

Lillicrap et al., 2016 100 I



I Alternatives to BP: Direct and Inditect Feedback Alignment

»

»

»

»

The FA principle is used for training hidden layers more
independently from the rest of the network

Feedback path disconnected from the forward path

* Possibility that the error in the feedback layer is
represented by neurons not participating in the forward
pass

* layerisnolonger reciprocally connected to the layer above

DFA
 direct feedback path to each hidden layer

IFA

 direct feedback path connecting to the first hidden layer
* then visiting every layer on its way forward

a) BP b) FA c) DFA d) IFA
y ([ @00) (@000
W B,
w, w, w, 1
h, (@O0 00O (000
W' B, e
Wz wz wz Bl wz B
h @O0 (000] 00O 000
wl wl wl wl
X
MODEL BP FA DFA
7x240 Tanh 2.16 £ 0.13% 2.20 & 0.13% (0.02%) | 2.32 £ 0.15% (0.03%)
100x240 Tanh 3.92 4+ 0.09% (0.12%)
1x800 Tanh 1.59 + 0.04% 1.68 + 0.05% 1.68 +£0.05%
2x800 Tanh 1.60 + 0.06% 1.64 + 0.03% 1.74 + 0.08%
3x800 Tanh 1.75 + 0.05% 1.66 + 0.09% 1.70 + 0.04%
4x 800 Tanh 1.924+0.11% 1.70 + 0.04% 1.83 4+ 0.07% (0.02%)
2x800 Logistic 1.67 £+ 0.03% 1.82 4+ 0.10% 1.75 + 0.04%
2x800 ReLLU 1.48 + 0.06% 1.74 4+ 0.10% 1.70 + 0.06%
2x800 Tanh + DO | 1.26 £ 0.03% (0.18%) | 1.53 £ 0.03% (0.18%) | 1.45 £ 0.07% (0.24%)
2x800 Tanh + ADV | 1.01 + 0.08% 1.14 4+ 0.03% 1.02 +0.05% (0.12%)

Test error on MNIST

A. Nokland, 2016
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I Alternatives to BP: Direct Random Target Propagation

» The error sign provides useful modulatory

signals to multi-layer networks ? BP b FA ©  Dm 4 DRIP
* Targets (i.e. one-hot-encoded labels) used in place — — — —
of the output error \}i? \T _l>9 \T / l>e (T J?e
* Targets are projected onto the hidden layers » (@ @ %@ @ n@ %@ @
I T sy AR | w, I
dray dray T T
» Fully solves both the weight transport and the 00 ee 00 ee re0ee®: |reeee:
update locking problems W’QT T wl s - - WI -
) a1y i ) oy ) BT B BT
10 ® e e 10 e e e neeee; | neeee;
» BUT: lower performance than BP, FA, DFA WJ H’}_I TF}W W}I
x000®0 0000 0000 t* > 0000®
Network BP FA DFA DRTP
FC1-500 DO 0.0 1.7240.08% 1.92+0.08% 2.59+0.11% 4.58+0.12%
DO 0.1 1.55+0.03% 1.66+0.06% 2.174+0.10% 4.65+0.13%
DO 0.25 1.64+0.06% 1.73+0.05% 2.3240.08% 5.364+0.11%

Test error on MNIST

Frenkel et al.,
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Training without a backward path: modulating the input through the error

t — o — e

Rumelhart et al., 1995

t — O — e

Lillicrap et al., 2016

DFA

Nokland, 2016

PEPITA
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I The PEPITA learning rule for Convolutional Neural Networks

» Same approach with Standard and Modulated pass
» Takes into account weight sharing of convolutional layers

» Eachfilteris updated based on the contributions of each input-map-region — output-map-element pair

Forward pass Update computation

Input maps Filters Output maps Input map

-
P

Filter update

Output map
activity difference 104




I Testing PEPITA on image classification tasks - experimental results

»

»

»

»

Res 1ce
Initialization Trained
In s _ .
PEF - TN Y i 0
The o oo '?:ié: Z‘fa . Wy 5 Jy : :
| ok ee
| a2 %.é. Ber 5 ¢ N 3 My g
Bt ff,'-., g ; O * S
e ' | -
FULLY CONNECTED MODELS CONVOLUTIONAL MODELS
MNIST CIFARI10 CIFAR100 MNIST CIFARI10 CIFAR100
BP 98.63+0.03 55.27+0.32 27.584+0.09 | 98.864+0.04 64.99+0.32 34.204+0.20
FA 908.42+0.07 53.82+0.24 24.614+0.28 | 98.504+0.06 57.514+0.57 27.15+0.53
DRTP 95.10+0.10 45.894+0.16 18.32+0.18 | 97.3240.25 50.53+0.81 20.1440.68
PEPITA | 98.01+0.09 52.5740.36 98.294+0.13 56.33+1.35
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Beyond PEPITA: towards time locality

PEPITA

Algorithm 1 Implementation of PEPITA

Given: Input (x) and label (targer)
#standard forward pass
h:} =X
fori=1,..L
he = oe(Wehe_1)
e = hy— target
#modulated forward pass
hi'™ = x+Fe
forf=1,..L
h™ = ae(Wehs™)
if £ < L:
AWe = (he
else:
AWy =e-(h§™ )
#apply update
We(t + 1) = We(t) — nAW,

535

o
w
=}

Accuracy [%]

o
N
(]

52.0

1 2
# Hidden la!

~ T
~hg-h; 1 —h

—}— PEPITA uniform
—}— PEPITA normal
PEPITA_Hebbian

yers

&

l

- h

. v T - : o
Bgrm) - (hgr)T ——> AW = hy - hS™T — W'

errl

£—1

PEPITA 2.0

Algorithm 2 Implementation of PEPITA local in space

Given: Input (x) and label (targer)
#standard forward pass

hy=x

forf=1,..L

he = ay(Wehe_y)

AW} =he-hy

#apply update for the positive phase
Wt + 1) = We(t) — AW,

e = hy— target
#modulated forward pass
hi™™ =x+Fe
forf=1,..L

N
o

w
o

Accuracy [%]

hs™™ = og(Wehs™)
if { < L:
AW, =
else:
AW, = —target - hﬁ’_’]T
#apply update for the negative phase
We(t 4+ 1) =W, (¢ + 1) — nAW,

N
o

PEPITA-time-local
—— PEPITA-time-local, F=0

hETT . h-r_'rr'.r' 10
£ f—1 0 25 50 75 100
’ ’ Training epochs
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