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The Dawn of On Device Learning in TinyML

The goal of On Device Learning (ODL)

is to make edge devices “smarter” and

more efficient by observing changes in

the data collected and self-

adjusting/reconfiguring the device’s

operating model. Optionally the

“knowledge” gained by the device is

shared with other deployed devices.

Danilo Pau, Elias Fallon, Evgeni Gousev, Davis 

Sawyer, Ira Feldman, Christopher B. Rogers
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• Accademia on 8/31/2022

– On-Device Learning Under 256KB Memory, Song HAN, Assistant Professor, MIT EECS

– Neural Network ODL for Wireless Sensor Nodes ,Hiroki MATSUTANI, Professor, Keio University

– Scalable, Heterogeneity-Aware and Trustworthy Federated Learning, Yiran CHEN, Professor, Duke University

– On-Device Learning For Natural Language Processing with BERT, Warren J. GROSS, Professor, McGill University

– Is on-device learning the next “big thing” in TinyML? Manuel ROVERI, Associate Professor, Politecnico di Milano

– ODL Professors Panel

• Industry on 9/1/2022

– TinyML ODL in industrial IoT, Haoyu REN, PhD Student, Technical University of Munich/Siemens

– NeuroMem® wearable, hardwired sub milliwatt real time machine learning with wholly parallel access to “neuron memories” 
fully explainable, Guy PAILLET, Co-founder, General Vision

– Using Coral Dev Board Micro for ODL innovations, Bill LUAN, Senior Program Manager, Google

– Platform for Next Generation Analog AI Hardware Acceleration, Kaoutar EL MAGHRAOUI, Principal Research Scientist, IBM T.J 
Watson Research Center

– Enabling on-device learning at scale, Joseph SORIAGA, Sr. Director of Technology, Qualcomm

– Training models on tiny edge devices, Valeria TOMASELLI, Senior Engineer, STMicroelectronics

tinyML On Device Learning Forum
8/31 – 9/1 , 2022 Online

https://www.tinyml.org/event/on-device-learning/

https://www.youtube.com/watch?v=yboIhr_lamY
https://www.youtube.com/watch?v=yALM_8v6beM
https://www.youtube.com/watch?v=T1EG_ApvWLw
https://www.youtube.com/watch?v=ERLFRluwRjA
https://www.youtube.com/watch?v=ElFBTnx7aG4
https://www.youtube.com/watch?v=4rmUpJzEYkQ
https://www.youtube.com/watch?v=N2vZmvfmDUw
https://www.youtube.com/watch?v=HZxhNg5nB6w
https://www.youtube.com/watch?v=HZxhNg5nB6w
https://www.youtube.com/watch?v=P6IzKx4DWvk
https://www.youtube.com/watch?v=nuamzjBnIf8&t=216s
https://www.youtube.com/watch?v=Gla2cfFfDjI&t=204s
https://www.youtube.com/watch?v=qKbAACzCWWQ
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• A framework of algorithms and associated tool for on-device tiny learning, Danilo PAU, Technical Director, IEEE and 
ST Fellow, STMicroelectronics

• In Sensor and On-device Tiny Learning for Next Generation of Smart Sensors Michele MAGNO, Head of the Project-
based learning Center, ETH Zurich, D-ITET

• Continual On-device Learning on Multi- Core RISC-V MicroControllers Manuele RUSCI, Embedded Machine Learning 
Engineer, Greenwaves

• On-device continuous event-driven deep learning to avoid model drift, Bijan MOHAMMADI, CSO, Bondzai

tinyML EMEA Forum - On Device Learning
9/12 , 2022 Cyprus, In person

https://www.tinyml.org/event/on-device-learning/

https://www.youtube.com/watch?v=q9s8-Qln7sE
https://www.youtube.com/watch?v=EVE06-OHH5U
https://www.youtube.com/watch?v=FiP48Za9ElM
https://www.youtube.com/watch?v=y75eGIQqGfY
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• 8:00 - 8:10 Opening remarks by Danilo Pau

• 8:10 - 8:40 Charlotte Frenkel "Merging insights from artificial and biological neural networks for 

neuromorphic edge intelligence"

• 8:40 - 9:40 Giorgia Dellaferrera "Forward Learning with Top-Down Feedback: Solving the Credit 

Assignment Problem without a Backward Pass"

• 9:40 - 10:10 Guy Paillet "NeuroMem®, Ultra Low Power hardwired incremental learning and 

parallel pattern recognition"

• 10:10 - 10:40 Aida Todri-Sanial "On-Chip Learning and Implementation Challenges with 

Oscillatory Neural Networks"

• 10:40 - 11:10 Eduardo S. Pereira “Online Learning TinyML for Anomaly Detection Based on 

Extreme Values Theory”

• 11:10 - 11:15 Closing remarks by Danilo Pau

Pacific Time

On Device Learning Forum 2023, May 16 2023
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Thank you, tinyML Strategic Partners, 
for committing to take tinyML to the next Level, together
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Executive Strategic Partners
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The Leading Development 
Platform for Edge ML

edgeimpulse.com
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Making Edge AI A Reality

Accelerate Your Edge Compute 

www.syntiant.com

http://www.syntiant.com/
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Platinum Strategic Partners
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tinyML® On Device Learning 
Forum

Enabling Ultra-low Power Machine Learning at the Edge

DEPLOY VISION AI

AT THE EDGE AT SCALE



On device learning Forum

Gold Strategic Partners
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Witness potential made possible at analog.com.

Where what if
becomes what is.
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NEUROMORPHIC 

INTELLIGENCE FOR THE 

SENSOR-EDGE

www.innatera.com
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www.st.com/ai

STMicroelectronics provides extensive 

solutions to make tiny 

Machine Learning easy
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© 2022 Synaptics Incorporated 24

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com
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Silver Strategic Partners
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Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

14.7k members in
47 Groups in 39 Countries

4k members 
&

11.6k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/
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Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

9.4k subscribers, 559 videos with 327k views 

http://www.youtube.com/tinyML


On device learning Forum tinyML EMEA Innovation Forum 2023 

Connect, Unify, and Grow the tinyML EMEA Community
June 26 - 28, 2023

https://www.tinyml.org/event/ 

EMEA 2023 

https://www.tinyml.org/event/emea-2023

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/emea-2023
mailto:sponsorships@tinyML.org
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Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions
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Giorgia Dellaferrera

30

Giorgia Dellaferrera has completed her PhD in computational 
neuroscience at the Institute of Neuroinformatics (ETH Zurich 
and the University of Zurich) and IBM Research Zurich with Prof. 
Indiveri, Prof. Eleftheriou and Dr. Pantazi. Her doctoral thesis 
focused on the interplay between neuroscience and artificial 
intelligence, with an emphasis on learning mechanisms in brains 
and machines. During her PhD, she visited the lab of Prof. 
Kreiman at the Harvard Medical School (US), where she 
developed a biologically inspired training strategy for artificial 
neural networks. Before her PhD, Giorgia obtained a master in 
Applied Physics at the Swiss Federal Institute of Technology 
Lausanne (EPFL) and worked as an intern at the Okinawa 
Institute of Science and Technology, Logitech, Imperial College 
London, and EPFL.
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Forward Learning with Top-Down 
Feedback: Solving the Credit 
Assignment Problem without a 
Backward Pass

Dellaferrera & Kreiman, ICML 2022
Srinivasan, Mignacco, Sorbaro, Cooper, Refinetti, Kreiman, 
Dellaferrera, 2023 (arXiv:2302.05440 ) 
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Weight 
symmetry!

Connecting the puzzle pieces of  bio-inspired learning algorithms

32

1989

Update 
locking!

Biologically 
unrealistic!

Non local!

Activity is 
frozen!
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Connecting the puzzle pieces of  bio-inspired learning algorithms

33
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Connecting the puzzle pieces of  bio-inspired learning algorithms

34
Today: 9 am PT Today: 9.45 am PT

PEPITA FFFA

WM WM
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Outline

» Neuro-inspired AI

• Why Backpropagation is biologically implausible

• Overview of alternative solutions to credit assignment

» PEPITA: error-driven input modulation

• Replacing the backward pass with a second forward pass

• Results on image classification tasks

• Soft alignment dynamics

• Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization

• Improving alignment with weight mirroring

» Forward-Forward algorithm

• Idea and results

• Similarities with PEPITA’s update rule

» Forward learning with top-down feedback

• Biological considerations 35

PEPITA FFFA
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Outline

» Neuro-inspired AI

• Why Backpropagation is biologically implausible

• Overview of alternative solutions to credit assignment

» PEPITA: error-driven input modulation

• Replacing the backward pass with a second forward pass

• Results on image classification tasks

• Soft alignment dynamics

• Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization

• Improving alignment with weight mirroring

» Forward-Forward algorithm

• Idea and results

• Similarities with PEPITA’s update rule

» Forward learning with top-down feedback

• Biological considerations 36

PEPITA FFFA
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Backpropagation: successful but not biologically plausible

» Success

• The most effective training algorithm

• State-of-the-art performance in complex cognitive tasks

» Algorithm

• Chain rule of calculus

• Change in synaptic strength ⟷ change of network’s error

37
Rumelhart et al., 1989 Lillicrap et al., 2020Crick, 1989

https://www.bbc.com/news/technology-35785875

Li et al., 2017
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Glossary

» Target (t)

• Desired output of a network

» Error (e)

• Deviation of the network’s output from the target

» Weights (W)

• Parameter corresponding to the strength of the connection between two 
nodes

38
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The backpropagation algorithm

» Forward pass

• Network’s response to input

• Error function 𝑒 = 𝑦 − 𝑡

• Weight updates proportional to its negative 
gradient

» Backward pass

• Error signal flows backward through the network

• Computed recursively via the chain rule

• Update phase

39Lillicrap et al., 2020
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Backpropagation of  the error is not biologically plausible

» Weight transport problem

• Symmetric weights for forward and backward computation

» Non-local information used for the updates

• Global error and downstream weights needed for learning

» Frozen activity during error propagation and parameter updates

• Separate forward and backward computation

» Update locking problem

• Backward computation needs to be complete before the next forward pass

41

Rumelhart et al., 1995
Lillicrap et al., 2020

Alternative Training Schemes
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Lillicrap et al., 2016 A. Nokland, 2016

Alternatives to BP:  relaxing symmetry requirements

42
Rumelhart et al., 1995
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A. Nokland, 2016

Alternatives to BP:  relaxing symmetry requirements

43
Lillicrap et al., 2016Rumelhart et al., 1995



BEST FOR You
O R G A N I C S  C O M P A N Y

A. Nokland, 2016

Alternatives to BP:  relaxing symmetry requirements

44
Lillicrap et al., 2016Rumelhart et al., 1995

+WM

Akrout et al., 2019
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Alternatives to BP:  relaxing symmetry requirements

45
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995
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Alternatives to BP:  relaxing symmetry requirements

46
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995
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The Backward Pass

47

The backward pass implies:

» Weight updates relying on non-local information

» Freezing activity for the update phase

» At least partial update locking

Remove the backward pass

Dellaferrera & Kreiman, ICML (2022)

FORWARD-ONLY LEARNING
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The Backward Pass

48

» PEPITA: Top down 
feedback connections

Dellaferrera & Kreiman, ICML (2022)
Hinton, 2022

FORWARD-ONLY LEARNING

» FF: Input sample 
corruption
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Outline

» Neuro-inspired AI

• Why Backpropagation is biologically implausible

• Overview of alternative solutions to credit assignment

» PEPITA: error-driven input modulation

• Replacing the backward pass with a second forward pass

• Results on image classification tasks

• Soft alignment dynamics

• Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization

• Improving alignment with weight mirroring

» Forward-Forward algorithm

• Idea and results

• Similarities with PEPITA’s update rule

» Forward learning with top-down feedback

• Biological considerations 49

PEPITA FFFA
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The PEPITA learning rule

50

» PEPITA = Present the Error to Perturb the Input To modulate Activity

» Substitutes the standard Forward+Backward scheme with two Forward Passes

• Standard Forward pass→ same as for standard algorithms

• Modulated Forward pass→ input is modulated by the error 

» F = projection matrix to add the error onto the input

» Update relies on difference of activations between Standard and Modulated pass
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The PEPITA learning rule for Fully Connected Neural Networks

51

» PEPITA = Present the Error to Perturb the Input To modulate Activity 

» … to Perturb the Input…

» … To modulate Activity 

» Present the Error …

x+Fe

ℎ1
𝑒𝑟𝑟

ℎ2
𝑒𝑟𝑟

𝑦𝑒𝑟𝑟

1st2nd
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Testing PEPITA on image classification tasks  - experimental results

» Results for PEPITA are close to BP’s performance

» In some tasks, PEPITA outperforms FA

» PEPITA always outperforms DRTP

» The PEPITA convolutional version

• Useful 2D features

52

Architecture:
1 hidden layer +
1 output layer
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Why it works: soft-antialignment

» Soft-antialignment

• Angle between 

• projection matrix F and 

• product between the forward weight matrices

• Evolution during learning → soft antialignment 

• Analytically proven for one-hidden layer linear network

53
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Approximating PEPITA to an Adaptive Feedback Alignment algorithm

» First order Taylor expansion

54

PEPITAFA

FA

AFA = Adaptive (W) Feedback Alignment
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Improving PEPITA’s alignment with weight mirroring

56

PEPITA

FA

PEPITAFA

?
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Improving PEPITA’s alignment with weight mirroring

57

Need one-on-
one connections
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Improving PEPITA’s alignment with weight mirroring

58

Note: the sign is flipped xerr=x-Fe

Architecture:
1 hidden layer +
1 output layer
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Training deeper fully connected models

» Adding activation normalization allows to train up to 6 layer networks

59
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» Neuro-inspired AI

• Why Backpropagation is biologically implausible

• Overview of alternative solutions to credit assignment

» PEPITA: error-driven input modulation

• Replacing the backward pass with a second forward pass

• Results on image classification tasks

• Soft alignment dynamics

• Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization

• Improving alignment with weight mirroring

» Forward-Forward algorithm

• Idea and results

• Similarities with PEPITA’s update rule

» Forward learning with top-down feedback

• Biological considerations

Outline

60

PEPITA FFFA
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The Forward-Forward algorithm

» Two forward passes per sample: 

• the positive pass operate on real data 

• the negative pass operates on “negative data”

» In the positive pass: 

• weights updated to increase the goodness in hidden layers

» In the negative pass:

• weights updated to decrease the goodness in hidden layers

» One measure of goodness

• sum of the squared neural activities

61

PEPITA FF
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Forward-Forward framework

PEPITA: weight update equivalent to the Forward-Forward framework

Equivalence of weight update

» Goodness as the sum of squared neural activities 

• h2
l for the positive pass and 

• (herr
l
2 for the negative pass.

» Local loss function Jl for layer l = the sum of 

• loss function of the positive pass J+
l and 

• loss function of the negative pass J−
l

If ReLU non-linearity:
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63

The Hebbian modification of  PEPITA

1st pass 2nd pass
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Forward-Forward framework

PEPITA: weight update equivalent to the Forward-Forward framework

Equivalence of weight update

» Goodness as the sum of squared neural activities 

• h2
l for the positive pass and 

• (herr
l )2 for the negative pass.

» Local loss function Jl for layer l = the sum of 

• loss function of the positive pass J+
l and 

• loss function of the negative pass J−
l

If ReLU non-linearity:PEPITA- Hebbian
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Differences between PEPITA and FF

» Method to generate the modulated sample

• PEPITA → add error → top-down feedback

• FF → hybrid mask

65
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Differences between PEPITA and FF

» Method to generate the modulated sample

• PEPITA → add error → top-down feedback

• FF → hybrid mask

» PEPITA does not maximize (resp. minimize) 
the activations squared in the clean (resp. 
modulated) pass

66
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Differences between PEPITA and FF

» Method to generate the modulated sample

• PEPITA → add error → top-down feedback

• FF → hybrid mask

» PEPITA does not maximize (resp. minimize) 
the activations squared in the clean (resp. 
modulated) pass

» Note: FF chooses a loss based on the logistic 
function applied to the goodness, minus a 
threshold → analytical differences

67
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» Neuro-inspired AI

• Why Backpropagation is biologically implausible

• Overview of alternative solutions to credit assignment

» PEPITA: error-driven input modulation

• Replacing the backward pass with a second forward pass

• Results on image classification tasks

• Soft alignment dynamics

• Approximating PEPITA to Adaptive Feedback Alignment: analytical characterization

• Improving alignment with weight mirroring

» Forward-Forward algorithm

• Idea and results

• Similarities with PEPITA’s update rule

» Forward learning with top-down feedback

• Biological considerations

Outline

68

PEPITA FFFA
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PEPITA solves the biologically implausible aspects of  BP

69

&FF
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Analysis of  PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix

• Reminiscent of cortico-thalamo-cortical loops 

70Shepherd & Yamawaki, 2021

In the thalamus:
- Thalamocortical (TC) neurons 
Excitatory neurons in the neocortex:
- Intratelencephalic (IT)
- Pyramidal tract (PT)
- Corticothalamic (CT) neurons
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Stores 1st pass

Analysis of  PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix

• Reminiscent of cortico-thalamo-cortical loops 

» Storing of the activation of the Standard pass until the Modulated pass

• Can be implemented in biological neurons through mismatch between
dendritic and somatic activity

71Asabuki & Fukai, 2020

Stores 2nd pass

Stores 1st pass

mismatch

xx+Fe
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Summary and Outlook

» PEPITA and FF

• Are novel training schemes relying only on forward computations

• Solve weight transport, freezing of neural activity, non-local weight updates and backward locking

• Achieve performance on-par with FA on simple image classification tasks

• PEPITA and FF share the same principles for the weight updates

• PEPITA can be approximated to an Adaptive Feedback Alignment

» Challenges

• Performance does not improve with depth

• Residual connection, intermediate error-driven modulation, training the F matrix

» Promising avenues for exploration

• PEPITA is not gradient-based: could it be more robust to gradient-based adversarial attacks?

• Application to object recognition on videos: 

• Consecutive frames need only one forward pass

• Implementation in unconventional physical analog hardware 

72

PEPITA FFFA



BEST FOR You
O R G A N I C S  C O M P A N Y

Acknowledgements

Gabriel Kreiman
Harvard, Boston 
Children’s Hospital

Will Xiao
Harvard Medical 
School

73

Ravi Srinivasan
Harvard, ETH

Martino Sorbaro
ETH AI Center

Francesca Mignacco
Princeton



Thank you for 
your attention!

» Questions?

» Ideas?

» Suggestions?

giorgia.dellaferrera@gmail.com
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Coding tutorial: Implementing PEPITA with Pytorch 1/11

» Today →Code (ICML 2022): https://github.com/GiorgiaD/PEPITA

» Code with Pytorch lightning (arXiv:2302.05440 ): 
https://drive.google.com/drive/u/1/folders/1wqHqtZx2NVuxpdjQuYUVVf1A8v-88oFS

https://github.com/GiorgiaD/PEPITA
https://drive.google.com/drive/u/1/folders/1wqHqtZx2NVuxpdjQuYUVVf1A8v-88oFS
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Coding tutorial: Implementing PEPITA with Pytorch 1/11
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Coding tutorial: Implementing PEPITA with Pytorch 2/11
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Coding tutorial: Implementing PEPITA with Pytorch 3/11
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Coding tutorial: Implementing PEPITA with Pytorch 4/11
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Coding tutorial: Implementing PEPITA with Pytorch 5/11
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Coding tutorial: Implementing PEPITA with Pytorch 6/11
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Coding tutorial: Implementing PEPITA with Pytorch 7/11
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Coding tutorial: Implementing PEPITA with Pytorch 8/11
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Coding tutorial: Implementing PEPITA with Pytorch 9/11
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Coding tutorial: Implementing PEPITA with Pytorch 10/11
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Coding tutorial: Implementing PEPITA with Pytorch 11/11
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Alternatives to BP:  relaxing symmetry requirements

87
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995 Frenkel et al., 2019
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Alternatives to BP:  relaxing symmetry requirements
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Alternatives to BP:  relaxing symmetry requirements

89
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995 Frenkel et al., 2019
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Alternatives to BP:  relaxing symmetry requirements

90
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995 Frenkel et al., 2019

t t
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DRTP
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Alternatives to BP:  relaxing symmetry requirements

91
Lillicrap et al., 2016 A. Nokland, 2016Rumelhart et al., 1995 Frenkel et al., 2019

t t

B1

B2

DRTP
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The backpropagation algorithm

» Forward pass

• Network’s response to input

• Error function 𝑒 = 𝑦 − 𝑡

• Weight updates proportional to its negative 
gradient

» Backward pass

• Error signal flows backward through the network

• Computed recursively via the chain rule

• Update phase

92Lillicrap et al., 2020
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The Backward Pass

93

The backward pass implies:

» Non-locality

» Frozen activity

» At least partial update locking

Remove the backward pass

Dellaferrera & Kreiman, ICML 2022



BEST FOR You
O R G A N I C S  C O M P A N Y

Test curves on CIFAR-10
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Error-based modulation is key for good performance
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Weight distributionafter training

» Wider weight distribution

• PEPITA learns different solutions compared to BP

• Sub exponential distribution

96

Distribution of output weights

Weight strength
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Weight distribution – heavy tailed

97
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Analysis of  PEPITA from a biological standpoint

PEPITA solves the BP’s issues of biological plausibility, but it introduces additional elements:

» Projection of the error onto the input through a fixed random matrix

• Global neuromodulatory signals modulate activity in V1

98
Shimegi et al., 2016
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» Asymmetric backpropagation

• Sign-concordant Feedback

» Relax weight symmetry requirement

• the magnitudes of feedback weights do not matter to 
performance

• the signs of feedback weights do matter —
the more concordant signs between feedforward and 
their corresponding feedback connection

99

Alternatives to BP:   Sign symmetry

Liao et al., 2016

Xiao et al., 2019

sign(W3)·|B|

sign(W2)·|B|

Sign-concordant Feedback
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» Precise symmetric connectivity between connected 
layers is not required to obtain quick learning

» Replaces WT with a matrix of fixed random weights B

• Each neuron in the hidden layer receives a random 
projection of the error vector

• Avoids all transport of synaptic weight information

» The circuit learns by encouraging a soft alignment of 
W with BT

• The angle between modulator vectors prescribed by 
feedback alignment and backprop decreases

• As W aligns with BT, B begins to act like WT, sending useful 
teaching signals to the hidden units

100

Alternatives to BP:   Feedback Alignment

Lillicrap et al., 2016
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» The FA principle is used for training hidden layers more 
independently from the rest of the network

» Feedback path disconnected from the forward path

• Possibility that the error in the feedback layer is 
represented by neurons not participating in the forward 
pass

• layer is no longer reciprocally connected to the layer above

» DFA

• direct feedback path to each hidden layer

» IFA

• direct feedback path connecting to the first hidden layer

• then visiting every layer on its way forward

101

Alternatives to BP:   Direct and Indirect Feedback Alignment

A. Nokland, 2016
Test error on MNIST
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» The error sign provides useful modulatory 
signals to multi-layer networks

• Targets (i.e. one-hot-encoded labels) used in place 
of the output error 

• Targets are projected onto the hidden layers

» Fully solves both the weight transport and the 
update locking problems

» BUT: lower performance than BP, FA, DFA

102

Alternatives to BP:   Direct Random Target Propagation

Frenkel et al., 2019
Test error on MNIST
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Training without a backward path: modulating the input through the error

103Rumelhart et al., 1995 Lillicrap et al., 2016 Nokland, 2016 Ours 
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The PEPITA learning rule for Convolutional Neural Networks

» Same approach with Standard and Modulated pass 

» Takes into account weight sharing of convolutional layers

» Each filter is updated based on the contributions of each input-map-region – output-map-element pair

104



BEST FOR You
O R G A N I C S  C O M P A N Y

Testing PEPITA on image classification tasks  - experimental results

» Results for PEPITA are close to BP’s performance

» In some tasks, PEPITA outperforms FA

» PEPITA always outperforms DRTP

» The PEPITA convolutional version

• Outperforms the PEPITA-trained FCNN

• Is able to extract useful 2D features

105
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PEPITA

106

Beyond PEPITA: towards time locality 

PEPITA 2.0

+
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