
“A hardware-aware neural architecture search algorithm 
targeting ultra-low-power microcontrollers”

Andrea Mattia Garavagno – Sant'Anna School of Advanced Studies of Pisa 
and University of Genoa

August 29, 2023



Thank you, tinyML Strategic Partners, 
for committing to take tinyML to the next Level, together



Executive Strategic Partners

3





1

Making Edge AI A Reality

Accelerate Your Edge Compute 

www.syntiant.com 

http://www.syntiant.com/


Platinum Strategic Partners

6



tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI

AT THE EDGE AT SCALE



Gold Strategic Partners

8



Witness potential made possible at analog.com.

Where what if
becomes what is.



tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories



The Leading Development 
Platform for Edge ML

edgeimpulse.com





NEUROMORPHIC 

INTELLIGENCE FOR THE 

SENSOR-EDGE

www.innatera.com







www.st.com/ai

STMicroelectronics provides extensive 

solutions to make tiny 

Machine Learning easy



© 2022 Synaptics Incorporated 17

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com



Silver Strategic Partners



Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

16.5k members in
49 Groups in 41 Countries

4k members 
          &
12.7k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML 

10.3k subscribers, 624 videos with 371k views 

http://www.youtube.com/tinyML


21

tinyML Asia           

Technical Forum
         
      November 16, 2023
       Seoul, South Korea

Call for Presentations and Posters – Deadline August 7
https://www.tinyml.org/event/asia-2023/



22

https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report


Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Andrea Mattia Garavagno
Andrea Mattia Garavagno was born in Rome (Italy) in 1996. 

He received his BSc in Electronic Engineering from the 

University of Genoa, and the MSc in Embedded Computing 

Systems from Scuola Superiore Sant’Anna and the 

University of Pisa, Italy. He is currently a PhD student at the 

Scuola Superiore Sant’Anna and the University of Genoa. 

Together with Giuliano Donzellini e Luca Oneto, he co-

authored the Italian book "Introduzione al Progetto di 

Sistemi a Microprocessore", and the international book 

“Introduction to Microprocessor-Based Systems Design” 

published by Springer in 2021 and 2022. Currently he's 

working on hardware-aware neural architecture search 
targeting microcontrollers.



A hardware-aware neural architecture 
search algorithm targeting low-end 

microcontrollers
Andrea Mattia Garavagno

Email: AndreaMattia.Garavagno@{edu.unige.it , santannapisa.it}

Department of Electrical, Electronic, Telecommunication Engineering and Naval 
Architecture, DITEN, University of Genoa, Genoa 16145, Italy

Department of Excellence of Robotics and AI, Institute of Mechanical 
Intelligence, Scuola Superiore Sant’Anna, Pisa 56124, Italy

Andrea Mattia Garavagno



The aim

• Bring convolutional neural networks (CNNs) to low-end 
microcontrollers units (MCUs)

Andrea Mattia Garavagno

High-end Microcontroller:
• Thousand-ish CoreMark score
• Thousands of kB of RAM 
• Multiple cores

Low-end Microcontroller:
• Tens-ish CoreMark score
• Tens of KB of RAM
• Just one core



The problem

• It’s not so easy to design CNN able to fit the constraints of low-end
MCUs

• Typically, people involved in software for low-end MCUs are not 
confident in the machine learning (ML) domain

• It would be useful to have an automatic way to design CNN

Andrea Mattia Garavagno



A possible solution

• Hardware-aware Neural Architecture Search (HW NAS)
• a technique for automating the design of artificial neural networks (ANNs), in our 

case CNNs, taking into consideration hardware constraints

• As of today:
• Gives state-of-the-art results in several Tiny-ML benchmarks
• Targets high-performance MCUs
• Requires from 200 to 40,000 GPU hours

MCUNet
300 GPU hours

ProxylessNAS
200 GPU hours

MNASNET 
40,000 GPU hours

Andrea Mattia Garavagno



The reasons behind a so high search cost

• Huge search spaces which contains few good candidate solutions able 
to perform well on MCUs

• Long evaluation methods of candidate solutions which often imply a 
complete training of each architecture

• Computationally intensive search strategies which often requires the 
computation of a huge number of derivatives or the usage 
reinforcement learning or gradient descent methods

Andrea Mattia Garavagno



Our solution

• Does not require any GPU to obtain results in an acceptable amount 
of time

• Targets low-end MCUs

• Achieves state-of-the-art results on the Visual Wake Word dataset, 
in just 3:37 hours on a laptop mounting an 11th Gen Intel(R) 
Core(TM) i7-11370H CPU @ 3.30GHz equipped with 16 GB of RAM 
and 512 GB of SSD, without using a GPU

Andrea Mattia Garavagno



How

• A refined search space, crafted explicitly for occupying few RAM 
while providing acceptable performances on low-end 
microcontrollers, reduces the number of candidate solutions

• A novel derivative-free search strategy, inspired by Occam’s razor, 
which starts from the smallest admissible solution and tries to 
generate larger candidates until the evaluation score increases, 
avoiding unnecessary multiplication of resources

• A fast evaluation method, based on an extremized version of the 
early stopping criterion, avoids spending a lot of time in the training 
of candidates

Andrea Mattia Garavagno



Refined search space

• The proposed search space is built by staking 
cells composed of fixed architectural elements 
(yellow dashed lines) upon a pre-processing 
pipeline (green dashed lines). The number of 
kernels, k, used in the first convolutional layer
(red dashed lines) sets the number of kernels 
used in the cells according to the following 
equation. 

• Candidate architectures can be conveniently 
represented by the tuple (k, c) where k is the 
number of kernels used in the first 
convolutional layer and c is the number of 
cells used by the architecture.

Andrea Mattia Garavagno



Search strategy

• The proposed search strategy starts 
with the lowest number of kernels 
(k=1) and searches for the best number 
of cells to stake (c), starting from zero 
(c=0). Then, it repeats itself, trying with 
larger values of k until the performance 
of the network found continues to 
increase. Doing so, resources are only 
added when the performance 
increases, thus respecting Occam’s 
razor (entities should not multiplied 
beyond necessity).

Andrea Mattia Garavagno



Search strategy - example

• We start with (k=1) 
and search for the 
best number of cells 
to stake (c), starting 
from zero (c=0)

• Note that (k=1,c=0) 
is the smallest 
feasible solution

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1

c
number of cells added



Search strategy - example

• We try to add one 
cell (c=1)

• We find out that this 
solution is better 
than the previous 
one, so we mark it 
with a green arrow 
(the evaluation 
phase will be 
discussed later)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1

c
number of cells added



Search strategy - example

• We try one more cell 
(c=2)

• For another time, we 
find a better solution 
for (k=1), hence we 
put another green 
arrow 

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1

c
number of cells added



Search strategy - example

• We continue adding 
cells (c=3)

• This time we find that 
the new candidate 
performs worse than 
the previous one, so 
we put a red arrow

• According to Occam’s 
razor, we must stop 
here to avoid 
unnecessary 
multiplications of 
resources

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1

c
number of cells added



Search strategy - example

• We found out that 
(c=2) is the best 
solution for (k=1)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1

c
number of cells added



Search strategy - example

• Now we repeat the 
same process with 
(k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• Now we repeat the 
same process with 
(k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• Now we repeat the 
same process with 
(k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• Now we repeat the 
same process with 
(k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• Now we repeat the 
same process with 
(k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• This time we reached 
the maximum 
number of cells that 
can be staked (no 
more pixels to 
process) without 
having a 
performance 
degradation, so we 
stopped there

• (c=5) is the best 
solution for (k=2)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added



Search strategy - example

• We find out that 
(k=2,c=5) is better 
than (k=1,c=2), so 
we proceed with 
(k=3)

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added

3



Search strategy - example

• We continue until we 
find better solutions

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added

3 4



Search strategy - example

• We find that 
(k=10,c=4) is worse 
than (k=9,c=3) so, 
according to Occam’s 
razor, we stop there

• The solution found is 
(k=9,c=3) 

• Notice that we could 
also stop because of 
resource completion 

Andrea Mattia Garavagno

k
number of kernels used in the first layer

5

4

3

2

1

1 2

c
number of cells added

3

…

9 10



Search strategy – in short

• It is a sort of directional 
search method, inspired by 
Occam’s razor

• The c direction is explored 
in the inner loop, while the 
k direction is in the outer 
one

• Not requiring derivatives 
allows for a faster search

Andrea Mattia Garavagno



Evaluation strategy

• Now let’s talk about how we pick the best model between two

• Candidates are evaluated by applying an extremized version of the 
early stopping criterion

• Each candidate is trained for just three epochs

• The best validation accuracy obtained during these epochs is used to pick the 
best candidate between two

Andrea Mattia Garavagno

How good is extremizing the early 
stopping criterion?



How good is extremizing early stopping?

Let’s compare it with a coin. On the left, we can see the probability of guessing the best 
performant model between two in the search space, using early stopping until epoch n. On 
the right, the same probability using a coin to decide which is the best model.

Andrea Mattia Garavagno



How good is extremizing early stopping?

Let’s compare it with a coin. On the left, we can see the probability of guessing the best 
performant model between two in the search space, using early stopping until epoch n. On 
the right, the same probability using a coin to decide which is the best model.

Andrea Mattia Garavagno

3rd epoch



To take away

Extremizing the early stopping criterion 

• allows for a drastic reduction in the search cost, enabling GPU-less HW NAS

• Reduces the search’s precision and repeatability…

• …but is consistently better than random guessing 

Andrea Mattia Garavagno



ColabNAS

• Another HW NAS targeting low-end MCUs

• It can be run on free GPU programs like Google’s Colaboratory and 
Kaggle Kernel

• It is more repeatable than this NAS...

• …but it still requires a GPU (even if you don’t have to own it)

Andrea Mattia Garavagno

Download 
and try it!



Summing up

• We use: 
• a refined search space, crafted explicitly for occupying few RAM while 

providing acceptable performances on low-end microcontrollers, which 
reduces the number of candidate solutions

• a novel derivative-free search strategy, inspired by Occam’s razor, which 
starts from the smallest admissible solution and tries to generate larger 
candidates until the evaluation score increases, avoiding unnecessary 
resource usage

• a fast evaluation method, based on an extremized version of the early 
stopping criterion, which avoids spending a lot of time in the training of 
candidates

Andrea Mattia Garavagno



Hardware-awareness

• We evaluated our 
algorithm on three STM32 
Ultra Low Power MCUs

• We used the Visual Wake 
Words datasets

• We set the resolution at 
50x50 rgb

Andrea Mattia Garavagno



Hardware-awareness

Andrea Mattia Garavagno

For reference:



Performance comparison

• We compare our method with MCUNet (MIT) and Micronets (ARM) 
projects, two HW NAS offering state-of-the-art results for the Visual 
Wake Words dataset

• They both target high-end MCUs of STM’s high-performance series

• Given our target, which is low-end microcontrollers, we selected the 
largest target among the lightest of the two projects, and we ran the 
proposed algorithm on it.

Andrea Mattia Garavagno



Performance comparison

Andrea Mattia Garavagno



The API

Download 
and try it!



Conclusion

• It’s an easy way to obtain CNNs for low-end MCUs
• does not require a GPU to obtain results in a reasonable amount of time

• It achieves state-of-the-art performances on the Visual Wake Words dataset, 
a standard TinyML benchmark

• We hope it can foster the usage of HW NAS for the developing of IoT
and wearable devices

Andrea Mattia Garavagno



Future works

• We’re working on a smaller implementation able to run on 
embedded devices

• It could preserve privacy by allowing the design of CNNs on the 
device itself

Andrea Mattia Garavagno



Thank you for the attention

Andrea Mattia Garavagno

Download 
and try it!



Copyright Notice

This multimedia file is copyright © 2023 by tinyML 
Foundation. All rights reserved. It may not be duplicated 
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML 
Foundation.

www.tinyml.org



Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the 
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does 
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding 
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


	Slide 1:    “A hardware-aware neural architecture search algorithm targeting ultra-low-power microcontrollers”
	Slide 2
	Slide 3: Executive Strategic Partners
	Slide 4
	Slide 5
	Slide 6: Platinum Strategic Partners
	Slide 7
	Slide 8: Gold Strategic Partners
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Reminders
	Slide 24: Andrea Mattia Garavagno
	Slide 25: A hardware-aware neural architecture search algorithm targeting low-end microcontrollers
	Slide 26: The aim
	Slide 27: The problem
	Slide 28: A possible solution
	Slide 29: The reasons behind a so high search cost
	Slide 30: Our solution
	Slide 31: How
	Slide 32: Refined search space
	Slide 33: Search strategy
	Slide 34: Search strategy - example
	Slide 35: Search strategy - example
	Slide 36: Search strategy - example
	Slide 37: Search strategy - example
	Slide 38: Search strategy - example
	Slide 39: Search strategy - example
	Slide 40: Search strategy - example
	Slide 41: Search strategy - example
	Slide 42: Search strategy - example
	Slide 43: Search strategy - example
	Slide 44: Search strategy - example
	Slide 45: Search strategy - example
	Slide 46: Search strategy - example
	Slide 47: Search strategy - example
	Slide 48: Search strategy – in short
	Slide 49: Evaluation strategy
	Slide 50: How good is extremizing early stopping?
	Slide 51: How good is extremizing early stopping?
	Slide 52: To take away
	Slide 53: ColabNAS
	Slide 54: Summing up
	Slide 55: Hardware-awareness
	Slide 56: Hardware-awareness
	Slide 57: Performance comparison
	Slide 58: Performance comparison
	Slide 59: The API
	Slide 60: Conclusion
	Slide 61: Future works
	Slide 62: Thank you for the attention
	Slide 63: Copyright Notice
	Slide 64: Copyright Notice

