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Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Renesas is enabling the next generation of Al-powered solutions
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&
12.7k followers
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Andrea Mattia Garavagno

Andrea Mattia Garavagno was born in Rome (ltaly) in 1996.
He received his BSc in Electronic Engineering from the
University of Genoa, and the MSc in Embedded Computing
Systems from Scuola Superiore Sant'‘Anna and the
University of Pisa, Italy. He is currently a PhD student at the
Scuola Superiore Sant’/Anna and the University of Genoa.
Together with Giuliano Donzellini e Luca Oneto, he co-
authored the Italian book "Introduzione al Progetto di
Sistemi a Microprocessore", and the international book
“Introduction to Microprocessor-Based Systems Design”
published by Springer in 2021 and 2022. Currently he's
working on hardware-aware neural architecture search
targeting microcontrollers.



A hardware-aware neural architecture
search algorithm targeting low-end
microcontrollers

Andrea Mattia Garavagno

Email: AndreaMattia.Garavagno@{edu.unige.it , santannapisa.it}

Department of Electrical, Electronic, Telecommunication Engineering and Naval
Architecture, DITEN, University of Genoa, Genoa 16145, Italy

Department of Excellence of Robotics and Al, Institute of Mechanical .
OF MEGHANICAL Intelligence, Scuola Superiore Sant’Anna, Pisa 56124, Italy Uane
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The aim

* Bring convolutional neural networks (CNNs) to low-end
microcontrollers units (MCUs)
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High-end Microcontroller: Low-end Microcontroller:
* Thousand-ish CoreMark score  Tens-ish CoreMark score
e Thousands of kB of RAM e Tens of KB of RAM

* Multiple cores e Just one core
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The problem

* It’s not so easy to design CNN able to fit the constraints of low-end
MCUs

* Typically, people involved in software for low-end MCUs are not
confident in the machine learning (ML) domain

* It would be useful to have an automatic way to design CNN

INSTITUTE 3
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A possible solution

 Hardware-aware Neural Architecture Search (HW NAS)
e atechnique for automating the design of artificial neural networks (ANNs), in our
case CNNs, taking into consideration hardware constraints
 As of today:
* Gives state-of-the-art results in several Tiny-ML benchmarks
* Targets high-performance MCUs
* Requires from 200 to 40,000 GPU hours

MCUNet ProxylessNAS MNASNET
300 GPU hours 200 GPU hours 40,000 GPU hours

INTELLIGENCE
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The reasons behind a so high search cost

* Huge search spaces which contains few good candidate solutions able
to perform well on MCUs

* Long evaluation methods of candidate solutions which often imply a
complete training of each architecture

 Computationally intensive search strategies which often requires the
computation of a huge number of derivatives or the usage
reinforcement learning or gradient descent methods
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Our solution

* Does not require any GPU to obtain results in an acceptable amount
of time

* Targets low-end MCUs

* Achieves state-of-the-art results on the Visual Wake Word dataset,
in just 3:37 hours on a laptop mounting an 11th Gen Intel(R)
Core(TM) i7-11370H CPU @ 3.30GHz equipped with 16 GB of RAM
and 512 GB of SSD, without using a GPU

INTELLIGENCE
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How

* A refined search space, crafted explicitly for occupying few RAM
while providing acceptable performances on low-end
microcontrollers, reduces the number of candidate solutions

* A novel derivative-free search strategy, inspired by Occam’s razor,
which starts from the smallest admissible solution and tries to
generate larger candidates until the evaluation score increases,
avoiding unnecessary multiplication of resources

* A fast evaluation method, based on an extremized version of the
early stopping criterion, avoids spending a lot of time in the training

wstte of candidates UniGe
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Min-Max Standardization

v

Batch Normalization

Refined search space

' ------ r ----- \
[ Conv2D(k, kernel_size=(3,3), activation="relu’") ]

i first convolutional layer
* The proposed search space is built by staking I -
cells composed of fixed architectural elements VoAb ool S22 Shases3)
(yellow dashed lines) upon a pre-processing ¥
ipeline (green dashed lines). The number of Batoh Normalization
ernels, k, used in the first convolutional layer v
(red dashed lines) sets the number of kernels Conv2D(n1, kemel_size=(3,3), strides=(2.2))
used in the cells according to the following I first cell
equation. sgi\ v sgi\
k 1 j c=10 | MaxPooling2D(pool_size=(2,2), strides=(2,2))
e [(2 _ ZE 11 2- ) Ne— 1—‘ ?»f C 2 1 ( ) Batch Notnalization
e Candidate architectures can be conveniently Comv2D (., kernel_ste=(3,3), strides=(2,2))
represented by the tuple (k, c) where k is the oth cel
number of kernels used in the first e _l _____
convolutional layer and c is the number of ! (GlobalAveragePooling2D) ‘l
cells used by the architecture. : v : .
INSTITUTE : (Dropout05) | U G
o HECHANCA | v - UnNIGe
. [Dense(n_classes, activation="softmax’ )] ll
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Search strategy

* The proposed search strategy starts

with the lowest number of kernels Algorithm 1 search strategy pseudocode
(k=1) and searches for the best number %+« 1 & Minimum number of kernels of the first layer
of cells to stake (c), starting from zero ¢+ 0 > No cells added

(C=O). Then, it repeats itSElf, trying with while (k, ¢) is feasible and f(k,¢) increases do

. c+ 0 > Reset cells
Iarger values of k until the .performance while (k,¢) is feasible and f(k, ¢) increases do
of the network found continues to cic+1 > Try with one more cell
increase. Doing so, resources are only end while
added when the performance k+—k+1 > Try with more kernels
end while

increases, thus respecting Occam’s
razor (entities should not multiplied
beyond necessity).

return (k,c) : maxf(k,c)

UniGe
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Search strategy - example

C
number of cells added

e We start with (k=1)
and search for the 5 <+
best number of cells
to stake (c), starting
from zero (c=0) 34

* Note that (k=1,c=0) 2 4
is the smallest
feasible solution

>

1 k

number of kernels used in the first layer
INSTITUTE :
OF MECHANICAL I I 1 e
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Search strategy - example

C
number of cells added

 We try to add one

cell (c=1) 5+
* We find out that this 4+
solution is better
than the previous T
one, so we mark it 2 4+
with a green arrow
(the evaluation T ?
phase will be 1 e

number of kernels used in the first layer

discussed later)

INSTITUTE .
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Search strategy - example

C
number of cells added

* We try one more cell

(c=2) 5+
* For another time, we 44
find a better solution
3 -t
for (k=1), hence we
put another green 24+ 4
arrow
it 4
! >
1 K
number of kernels used in the first layer
INSTITUTE ht
o e UniGe
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Search strategy - example

C
number of cells added

* We continue adding
cells (c=3)

* This time we find that
the new candidate 4 -4
performs worse than
the previous one, so 34
we put a red arrow

e According to Occam’s
razor, we must stop
here to avoid 14
unnecessary
multiplications of k
resources number of kernels used in the first layer

INSTITUTE .
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Search strategy - example

C
number of cells added

* We found out that
(c=2) is the best 5+
solution for (k=1)

>

-l »

k

number of kernels used in the first layer
INSTITUTE :
OF MECHANICAL I l 1 e
INTELLIGENCE
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Search strategy - example

number ofiells added
* Now we repeat the
same process with 5 -t
(k=2) A
s+ 3
21 1
1+ 1
1 2

Andrea Mattia Garavagno

>
k

number of kernels used in the first layer

UniGe
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Search strategy - example

number ofiells added
* Now we repeat the
same process with 5 -t
(k=2) A
s+ 3
21 1
it 1
1 2

Andrea Mattia Garavagno

>
k

number of kernels used in the first layer
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Search strategy - example

number ofiells added
* Now we repeat the
same process with 5 =+
(k=2) A
s+ 3
2+ 1
it 1
1 2

Andrea Mattia Garavagno

>
k

number of kernels used in the first layer
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Search strategy - example

C
number of cells added

* Now we repeat the

same process with 5 =+
(k=2)

D o
N

INSTITUTE
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>
k

number of kernels used in the first layer
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Search strategy - example

C
number of cells added

* Now we repeat the

same process with 5 =+
(k=2)

t » B
S .
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>
k

number of kernels used in the first layer
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Search strategy - example

number of cells added

* This time we reached

the maximum
number of cells that
can be staked (no
more pixels to
process) without
having a
performance
degradation, so we
stopped there

* (c=5) is the best
st solution for (k=2)

INTELLIGENCE

C

i -
St B B B »

Andrea Mattia Garavagno

>
k

number of kernels used in the first layer
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Search strategy - example

C
number of cells added

* We find out that
(k=2,c=5) is better 5+
than (k=1,c=2), so
we proceed with
(k=3) 3T

>

i » @
St B B B »

4

3 k

number of kernels used in the first layer
INSTITUTE :
OF MECHANICAL I l 1 e
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Search strategy - example

C
number of cells added

 We continue until we
find better solutions 5 =

>

St B B B »

o
. .

-l

4

4 k

number of kernels used in the first layer
INSTITUTE :
OF MECHANICAL I | 1 e
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Search strategy - example

C
number of cells added

* We find that
(k=10,c=4) is worse 5+
than (k=9,c=3) so,
according to Occam’s
razor, we stop there 3+

4 =i

 The solution found is 2 +
(k=9,c=3)

* Notice that we could
also stop because of

1

St B B B »
> B B D @

o
. .

-l
\ 4

L
ot B B @

>

1
& 10 k

number of kernels used in the first layer

INTELLIGENCE
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Search strategy — in short

* It is a sort of directional

search meth Od, inspired by Algorithm 1 search strategy pseudocode
) k<1 > Minimum number of kernels of the first layer
Occam’s razor ¢+ 0 > No cells added
. . . hile (%, c¢) is feasible an , ¢) Increases
* The c direction is explored whlle (k;c) is foasible and j{ky o) moreaseado
in the inner |00p’ while the while (k, ¢) is feasible and f(k,c¢) increases do
k d . . . c+—c+1 > Try with one more cell
irection is in the outer end while
one k+—k+1 > Try with more kernels
end while
* Not requiring derivatives return (k, c) : maz f(k, c)

allows for a faster search
INSTITUTE 3
v UniGe
5 Andrea Mattia Garavagno D ITE N
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Evaluation strategy

* Now let’s talk about how we pick the best model between two

e Candidates are evaluated by applying an extremized version of the
early stopping criterion
e Each candidate is trained for just three epochs

* The best validation accuracy obtained during these epochs is used to pick the
best candidate between two

How good is extremizing the early
stopping criterion?

UniGe
Andrea Mattia Garavagno D ITE N




How good is extremizing early stopping?

Let’s compare it with a coin. On the left, we can see the probability of guessm§ the best
performant model between two in the search space, using early stopping until epoch n. On
the right, the same probability using a coin to decide which is the best model.

1.00 0754 e~ A — tolerance =0
tolerance = 0.01
—— tolerance = 0.02
0.98

0.70 — S —~—e S tolerance = 0.03
' —— tolerance = 0.04

0.96 —— tolerance = 0.05
Fo £ 0.65
S 0.94 1 =
o [}
= o WW\__,M_/\
E 2
0.92 2 0.60
—— tolerance = 0
0.90 - tolerance = 0.01
—— tolerance = 0.02 0.55 A
—— tolerance = 0.03
0.88 —— tolerance = 0.04

—— tolerance = 0.05 ) —W_/"MM\/\N\_‘J/\'\—-

0.50

INSTITUTE 0 10 20 30 40 50 0 10 20 30 20 50 .
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How good is extremizing early stopping?

Let’s compare it with a coin. On the left, we can see the probability of guessm§ the best
performant model between two in the search space, using early stopping until epoch n. On
the right, the same probability using a coin to decide which is the best model.

1.00 A 0754 e~ A —— tolerance =0
tolerance = 0.01
—— tolerance = 0.02
0.98
0.70 e ~——~—e S tolerance = 0.03
' —— tolerance = 0.04
0.96 —— tolerance = 0.05
MMWW_
Py 2 0.65
= 0.94 < g 5
5 3 epOCh 3 WWN\——'W
S o
0.92 4 2 0.60
— tolerance = 0
0.90 - tolerance = 0.01
—— tolerance = 0.02 0.55 A
—— tolerance = 0.03
0.88 —— tolerance = 0.04
—— tolerance = 0.05 0.50 - P g S N
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To take away

Extremizing the early stopping criterion

* allows for a drastic reduction in the search cost, enabling GPU-less HW NAS ‘

* Reduces the search’s precision and repeatability...

e ...butis consistently better than random guessing

INSTITUTE ht
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Download ;“s.

COlabNAS and try it! ;.;ii}: '*3::.*'
[mlFesss
* Another HW NAS targeting low-end MCUs

* It can be run on free GPU programs like Google’s Colaboratory and
Kaggle Kernel

* It is more repeatable than this NAS...
e ...but it still requires a GPU (even if you don’t have to own it)

INTELLIGENCE
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OF MECHANICAL nl e

Andrea Mattia Garavagno DITEN



Summing up

* We use:

* arefined search space, crafted explicitly for occupying few RAM while
providing acceptable performances on low-end microcontrollers, which
reduces the number of candidate solutions

* a novel derivative-free search strategy, inspired by Occam’s razor, which
starts from the smallest admissible solution and tries to generate larger
candidates until the evaluation score increases, avoiding unnecessary
resource usage

* a fast evaluation method, based on an extremized version of the early
stopping criterion, which avoids spending a lot of time in the training of
candidates

INSTITUTE ht
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Hardware-awareness

* We evaluated our
algorithm on three STM32

STM32 MCU RAM
Ultra Low Power MCUs

. LOT10RBT6 20 kiB
e We used the Visual Wake

Words datasets L151UCY6DTR 32 kiB
 We set the resolution at L412KBUS3 40 kiB

50x50 rgb

INSTITUTE
OF MECHANICAL
INTELLIGENCE

Andrea Mattia Garavagno

Flash CoreMark

128 kiB 75
256 kiB 93
128 kiB 273

UniGe
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For reference:

STM32 MCU RAM Flash CoreMark

H a rd Wa re_a Wa re n eSS LOTORBT6 20 kiB 128 kiB 75

Model
vww_[010rbt6
vww_[151ucy6bdt

vww_1412kbu3

INSTITUTE

OF MECHANICAL
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B Sant’Anna

Accuracy
72.3%
74.6%

77.2%

L151UCY6DTR 32 kiB 256 kiB 93

L412KBU3 40 kiB 128 kiB 273

RAM occupancy  FLASH occupancy  Search Cost GPU

20 kiB 10.66 kiB 1:50h no
26 kiB 19.73 kiB 2:01h no
31 kiB 28.48 kiB 3:53h no

UniGe
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Performance comparison

* We compare our method with MCUNet (MIT) and Micronets (ARM)
projects, two HW NAS offering state-of-the-art results for the Visual
Wake Words dataset

* They both target high-end MCUs of STM’s high-performance series

* Given our target, which is low-end microcontrollers, we selected the
largest target among the lightest of the two projects, and we ran the
proposed algorithm on it.

INTELLIGENCE
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Performance comparison

Test Accuracy

MCUNet

mm 87.4%

e 76,05 I
i

Micronets

Ours

Flash occupancy - TFLite Micro

MCUNet B 530.52 kiB

i 273.81 kiB
i 23.65 kiB

Micronets

Ours

INSTITUTE
OF MECHANICAL
INTELLIGENCE

Sant’Anna

Scuola Universitaria Superiore Pisa

Andrea Mattia Garavagno

RAM occupancy - TFLite Micro

MCUNet s 168.5 kiB

wmm 70.50 kiB
i 28.50 kiB

Micronets

Qurs

MACC

MCUNet

Micronets

Qurs

UniGe
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input_shape = (50,50,3)

T h A P | path_to_training_set =
EE val_split = 0.3

path_to_test_set =

cache =

ram_upper_bound = 40960
flash_upper_bound = 131072
MACC_upper_bound = 2730000

nanoNAS = NanoNAS(ram_upper_bound, flash_upper_bound, MACC_upper_bound,

path_to_training_set, val_split, cache, input_shape, save_path= )
nanoNAS.search(save_search_history= )
Download
and try it! nanoNAS.train(training_epochs=100, training_learning_rate=0.01, training_batch_size=128)

nanoNAS . apply_uint8_post_training_quantization()

nanoNAS.test_keras_model(path_to_test_set)
nanoNAS.test_tflite_model(path_to_test_set)
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Conclusion

* It’s an easy way to obtain CNNs for low-end MCUs
» does not require a GPU to obtain results in a reasonable amount of time

* It achieves state-of-the-art performances on the Visual Wake Words dataset,
a standard TinyML benchmark

* We hope it can foster the usage of HW NAS for the developing of loT
and wearable devices
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Future works

* We’re working on a smaller implementation able to run on
embedded devices

* It could preserve privacy by allowing the design of CNNs on the
device itself
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Thank you for the attention
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