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Qualcomnm
Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Perception
Object detection, speech
recognition, contextual fusion
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Edge cloud
Reasoning
Scene understanding, language
understanding, behavior prediction
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Reinforcement learning C|Oud

for decision making
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The Leading Development
Platform for Edge ML




Decarbonization | . pigitalization

Driving decarbonization and digitalization. Together.

Infineon serving all target markets as -
Leader in Power Systems and loT (I"fineon

www.infineon.com
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.

s @

BUILDING
AUTOMATION

CITY TRANSPORT
INFRASTRUCTURE & LOGISTIC
HEALTH )7 N HOME
CARE | zz g [ AUTOMATION

INDUSTRIAL

AUTOMATION CONSUMERS

renesas.com

ENESAS
BIG IDEAS FOR EVERY SPACE



el | - T Y S7;

- life.augmented

'

STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy
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Join Growing tinyML Communities:

16.5k members in
49 Groups in 41 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members
&
13k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)
www.youtube.com/tinyML
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YaY https://www.wevolver.com/article/2023-edge-ai-technology-report m&

FOUNDATION

l" | ]
e ¢ o« WEVOLVER

2023 Edge Al Technology
Report

The guide to understanding the state of the art in hardware & software in Edge Al.
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Beatrice Rossi

Beatrice Rossi graduated in Mathematics and Applications
at Universita degli Studi di Milano Bicocca in 2008. Since
then, she has been working in STMicroelectronics, System
Research and Applications. Her research interests include
Edge Al, Tiny Machine and Deep Learning, and Distributed
Ledger Technology for the IoT.
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Michele Craighero

Michele Craighero graduated in Computer Science and
Engineering at Politecnico di Milano in 2022 and he is
currently in the first year of his PhD. His research project is
titled “Learning and Adaptation in Distributed Environments
and it is a collaboration between Politecnico di Milano and
STMicroelectronics. His research interests include Machine
Learning techniques for Time Series Classification, Change
Detection and Unsupervised Domain Adaptation.
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Enabling On-Device Learning
on STM32 microcontrollers

Beatrice Rossi, Michele Craighero
System Research and Applications, STMicroelectronics

DEIB, Politecnico di Milano



The rise of Edge Al

We are surrounded of smart devices
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Industrial

Maintenance
Condition monitoring,

Predictive maintenance.

Focus Applications

Internet of Things
(IoT)

Smart cities, Smart
buildings, Connected
homes and things

Healthcare and
Wellbeing Systems
Monitoring through
wearables, Remote
care.

life.augmented

Automotive

Enhanced safety,
efficiency, overall
driving experience,;
BMS.




Example: Human Activity Recognition

HAR is a time series classification task identifying the specific

movement or action of a person based on sensor data. OPTIMIZED WITH
>
- sTm32 U

%5 roach Cube. Al

MODEL CREATED WITH

— Exploits 3-axis accelerometer data

—

— Classes: stationary, walking, running, biking, driving... AIFU%:P&CK

FP-AI-SENSING1

1D - Convolutional Neural Network model

RUNNING ON

&

STEVAL-STLKT01V1

COMPATIBLE WITH

STM32L4 SERIES



From on-cloud to on-device learning

w%mart devices

life.augmente:



From on-cloud to on-device learning

w%mart devices

Low privacy and security of data
High latency
Low personalization



From on-cloud to on-device learning

Pretrained

[

——==y 1 - w@Smartdevices

lureslaoy

On-Device Learning (ODL):
Adapt a pretrained model after
deployment based on user’s
Interaction and newly acquired
data.



The benefits of ODL
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Enhanced privacy and security Improve Al-
powered

Lower latency experiences

Improved accuracy:
- By Personalization Enable key

- By more sophisticated learning schemes as features for our
Federated Learning products




Where we are

Cloud-based learning On-device learning

O » »
On-device inference
Frameworks

N %
sTM32 N B
TensorFlow Lite  Gube. Al (@

Model optimization :
Model quantization

Code generation
L SRRl Solutions for efficient on-device inference

are mature

— those of learning are at their early stages
” (especially on MCUSs!)



The Challenge

Enable ODL functionalities on STM32 microcontrollers

Performing backpropagation on
MCUs is highly challenging due to
the strict memory and computational
constraints.

Forward

Backward pass



Our Contributions

CRAIGHERO, Michele, et al.

On-Device Personalization for Human
Activity Recognition on STM32.

IEEE Embedded Systems Letters, 2023.

R

WA

SW framework to train 1D-CNNs on STM32 MCUSs:

2. Explicit gradient computation for the several
common network layers;

3. Memory footprint and CPU loads estimates;
Case study: personalization for HAR.

36
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SW Framework




Network:

Instantiates the
network from
topology specs;
Initializes network
parameters
(randomly set or
imported from a pre-
trained model).

Lys

life.augmented

Architecture,
parameters wy, by

l

module
NETWORK

SW Framework

TRAINING

Network

Hyperparameters

submodule

Loss L

Inference <

LS oduie Trained
EVALUATION
parameters w, b

FORWARD
submodule

submodule
BACKWARD

Evaluation:
Performs inference and computes the loss

> Performance evaluation

Training:
Orchestrator: governs
the training procedure
by invoking alternatively
the Forward and
Backward modules;

Forward: performs the
FW pass implementing
the forward
expressions;
Backward: performs
the BW pass
implementing the
backward expressions
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Gradient Computation
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Backpropagation

Forward pass »




Forward pass

a=f(x,w,b)

activations

a

A 4

Backward pass

f
input X )\/

The function f depends on the type of layer

Ly
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Gradient Computation

a|nJ ureyd
areleAn NN

aL/aW local
gradients

gradients
0L/0b

<€

Derivatives are computed using the Multivariate
Chain Rule

41




Expressions for Layers of 1D-CNNs

Layer Forward pass Backward pass Parameters
Input Weights Bias Weights Bias
Dense a=wT .x+b oL _ . 0L OL — . (0L oL _ 2L M- N N
ox da ow da b da
U o renv(x W OL __ nnv (OL g; : OL _ . [OL OL _ AL R :
ConvlD a=conv(x.w)+b Gy = con (aa.ﬂlp(w).lull) S = com (aa .x) 5 = oa FsC <K F
R aL
Activation U = = S~ —a—t : - = :
2 Z;ﬁ::l e¥i Ox
, ae s AL STD oL __ 1 0L = . B B
AvgPooll1D Gim = ) i=0 Lji Oxin ~— p Oajij
slobal Av o SN oL _ 1 OL i ) i i
(llOl)dl.A\ gPOOllD (‘J P l\’ Z/I:O ‘lJI ()J'IJ — ‘\r Uajn
Flatten a = vec(x) OL _ reshape ﬂ) - - - -
Ix I da

Lys

life.augmented
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oL /0w local
< gradients
gradients
dL/db
<
<

Derivatives

ZZ L Ofim
da;, Ox

j=1k=1

oL
— = conv

0x

Ly
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The layer function

C K
= Z Z Xem+k-1Wjck T bj

c=1k=1

je{l,..,F} me{l,.. M}
M=N—-K+1

Example: ConvlD

Hints

* n—k+ 1ranges from 2 — K
to N (N + K — 1 terms for each
channel j)

. S—ihas sizeFX(N—K+1).If
K > 1, we apply a zero-
padding to S—i by adding F -
(K — 1) zeros to both sides of
oL : : :
P along its second dimension

* Index k has opposite signs in
the two terms of the

. . AL
convolution (—k in P and

+ k in w), thus a flipped kernel
is obtained
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Estimating Resources




Memory Footprint

Our SW framework is equipped with atool that estimates the memory

footprint and the CPU loads needed to train a given neural network.

Memory Footprint

« Model memory

« Activations memory

* Optimizer memory:

- Stochastic Gradient Descent: requires storing the first order momentum of each
parameter, thus occupies the same memory as the model.

- Adam: uses the first and second order momenta of each parameters. It occupies
2X the size of the model.

Kys I

life.augmented



Model Memory

Memory used to store network’s parameters (weights & biases and other hyperparameters)

Depends on the network’s architecture and remains constant regardless of the input or batch size

#parameters * bit precision
Not quantized, at least in this seminal work

life.augmented



Activations Memory

Forward

f(w.x:vy)Loss

| 0L/0a | JL/0ar |
awb) : w-b-J eenogb Lagwiby oL _ N oL of;
k — & k — N k ow i—laa;é‘w
aL_iaLaf
6__i_16_a!%

life.augmented
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Activations Memory: Inference

Forward pass »

Output

In on-device inference, activations of previous
layers can be discarded while the computation goes

forward (they are stored temporarily in an over-
writable buffer)




Activations Memory: Transfer Learning

Forward pass »

In Transfer Learning activations of
frozen layers can be discarded as

corresponding gradients and errors do
not have to be computed.




Memaory consumption (MB)

Activations Memory

Memory used to store the activations corresponding to the
Memory consumption of different NN models layers we want to train Oﬂ'dGVlce.

B Parameters
Il Activations

Depends on the network’s architecture, input and batch
size.

#activations * bit precision
Not quantized, at least in this seminal work

Inceptionv4 ResNet-50 VGG-16
Model

Lys
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Our SW framework is equipped with atool that estimates the memory

footprint and the CPU loads needed to train a given neural network.

Layer Forward pass Backward pass Parameters
\ p P
Input Weights Bias Weights | Bias
-

_— ;. oL _ .. 9L 8L .. . (0L aL _ oL N i
Dense a=w’ -x+b ox — da ow = (i-);.) b — da M- N N
ConvlD a=conv(x.w)+b OL _ conv (2L, flip(w). full OL _ copv (8L x 9L _ 0L | p.Cc.K F

Ox Oa ow dJa ob da

Hivafs o et oL _ .

Activation A= Z;\;—l = s = € t

' g e kNP g oL . . 1.8L
AvgPool 1D UGm = 5 D i Tii B s
‘lohalAveP, S . 8L _ 1 OL
(1|0|)¢ll./\\gl ool1D G = N Zi:() €Ly dzi; — N dain CPU Load
. — aL - al
Flatten a = vec(x) % = reshape(52)

Lys

life.augmented

CPU Load

« Depends on the type of layers we want to train

* |Is derived from the explicit expressions in Table.

« Operations are performed using floating point numbers,

thus we refer to them as FLOPSs.
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Case Study: Personalization for HAR
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Case study: Human Activity Recognition

HAR is a time series classification task which aims to identify the

specific movement or action of a person based on inertial sensor data.

Approach: Vs/a
LSM6DSRX

Tri-axial accelerometer data (IMU)

» Activities: standing, sitting, walking, running,
biking, ...

Deep learning models

o 0 @ @ i.

HAR has great potential for daily life tracking, athletic training,
healthcare and physiotherapy.




New user

Personalization in HAR

In typical HAR scenarios a vendor trains a global model by
recruiting a large numbers of subjects and then delivers it to
clients who target real-life applications.

The global model successfully performs HAR assuming the
same distribution between subjects and customers’ data.

life.augmented

Global model

However, there always exist differences in those distributions

due to the heterogeneity of subjects.
The global model will overfit the global dataset and cannot

generalize on data from new users.

Personalization fine-tunes a pre-trained global model using
data from new users ...on device!

54



WISDM: Wireless Sensor Data Mining ST dataset

https://www.cis.fordham.edu/wisdm/dataset.php

» 36 users, around 30k samples for each user

» 6 activities: walking, jogging, upstairs,
downstairs sitting, standing

« Sampling frequency 20 Hz
® ) [ 4 @
‘_
Used to pretrain a global model

Ly

life.augmented

Datasets

https://github.com/ausilianapoli/HAR-CNN-Keras-STM32

« Collected using SensorTile.box
« 3 users, around 30k samples for each user

« 3 activities: walking, upstairs, downstairs (a
subset of those of WISDM)

« Sampling frequency 27 Hz (subsampled at 20

TR

Used to represent a domain shift from WISDM
dataset

55



Layer Output Shape
Input(20,3) (20,3)
ConvlD(F=32,K—3) (18,32)
AvgPool1D(p=2) (9,32)
ConvlD(F—=64,K—3) (7,64)
AvgPoollD(p=2) (3.64)
GlobalAvgPooll1D() (64)
Dense(50) (50)
Dense(6) (6)

Lys

life.augmented

Model Architecture

Inputs: from 1s to 5s of recordings from tri-axial accelerometer

corresponding to inputs of shape: (20,3),(40,3),(60,3),(80,3),(100,3)

Model architecture: 1D-CNN

1) Conv1D with F = 32 filters and kernel size K = 3 with ReLU,
AvgPoollD

2) Conv1D of F = 64 filters and kernel size K = 3 with ReLU,
AvgPoollD, GlobalAvgPooll1D

3) Dense of M = 50units with ReLU

4) Dense of M = 6 units with Softmax

Total number of parameters: around 10k

56



Target Board

Nucleo-L496ZG

» Ultra low-power MCU STM32L496ZG

* Arm® Cortex®-M4 32-bit RISC core
operating at a frequency of up to 80 MHz.

« 320-Kbyte sRAM.
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Experiment 1: WISDM Dataset

Does personalization on user-specific data improve the accuracy of a pretrained model?

e Leave-One-Subject-Out (LOSO) Approach
® 1 ’ : ,
A @ T @ For each user i = 1, ..., 36:
® e 1 : * We define a training set TR; and test set T'S; and we pretrain a
| MODEL  PERSONALZATON. g : " mTEf‘f global classifier € on the other 35 users
TR ey eeiend o Personalization strategies:
s e Full: we personalize C; by retraining all the layers of C using TR;
" evainea Partial (Transfer Learning): we personalize C; by retraining only
[nput WISDM Dataset the last 2 dense layers of C using TR;
gzs | Noboes 1L vl * Weassess C; onTS;
(1003) | 0813 0955 0.969 :
803 | 0815 0963 0973 * Wealso consider No Pers. as the performance of the global
(60.3) 0.819 0962 0.978 classifier C.
(40,3) 0.808  0.958 0.974
(20,3) 0.804  0.948  0.967

F1 Score (averaged on WISDM users) Full personalization reaches the highest F1-score for all the input sizes.

Lys

life.augmented



Experiment 2: ST Dataset

Does personalization of a pretrained model outperform a classifier trained only

on the target user?

Input

ST Dataset

size No Pretrain. TL Full
(100.3) 0.936 (0.938 0.960
(80.3) 0.944 0.939  0.962
(60.,3) 0.938 0.931  0.966
(40,3) 0.951 0.929 0,965
(20,3) 0.945 0911  0.959

F1 Score (averaged on ST users)

We consider a global classifier C trained on the WISDM dataset

For each user i = 1, 2,3 of the ST dataset

We define a training set TR; and test set T'S; and we fine tune the last

layer of C using the other 2 users (2 epochs).

Personalization strategies:
Full: we personalize C; by retraining all the layers of C using TR;
Partial (Transfer Learning): we personalize C; by retraining only the
last 2 dense layers of C using TR;

We assess C;onTS;

We train a user specific classifier (No Pretrain) from TR; starting from a

random initialization.

Full personalization reaches the highest F1-score for all the input sizes.
Enabling the retraining of all the network’s layers is highly beneficial even when personalization is
"l performed on data from a different dataset, which is common in HAR scenarios.

life.augmented



Estimating Resources

The memory footprint and the time needed for both Full and TL personalization are estimated

using the tool we developed.

Memory Footprint

* Increasing the input size results in larger memory

footprint
Input | Memory Footprint Time per batch  All the tested cases are within the memory limitations of
size TL Full TL Full our selected device (less than 320 kB)
(100,3) | 115KB 189 KB || 1425s 48.10 s
(80.3) | 102KB 165 KB || 11.27s 38.05s
603) | 91KB 131 KB 829s 28.00s _
403) | 79kB  122KB| 531s 17.95s| | Time per batch (of 32 samples)
(20.3) 63KB 08 KB 2.33 s 7.90 s

* Increasing the input size results in a larger execution
time
« However, an input size of (20, 3) is enough for reaching

‘,l a very high accuracy

life.augmented



Power Consumption

Consumed power is obtained by

X-NUCLEO-LPMO1A power shield multiplying the measured current by the
Measures the current absorbed during the training voltage provided (3.3 V);

Consumed power is practically the same
for TL and Full personalization

procedures for any input size;

Energy (power x time) required to
process a single batch is higher for the
Full personalization, since it scales
linearly with the time.

[nput Time per batch Power per batch

si7e TL Full gl B Full
Target board (00 (14255 43105 | 267 mW  2.68 mW
STM32L49672G (803) | 11.27s 3805s | 2.68 mW  2.69 mW

(60.3) | 829s  28.00s | 2.66 mW  2.68 mW
r (40.3) D51 8 17.95 s 2.64 mW 2.67 mW
Y/ (203) | 233s  790s | 2.65mW  2.65 mW 61

life.augmented




Conclusions and Future Works

We developed a SW framework to fine-tune and personalize 1D-
CNN on STM32 MCUs.

Our experiments on HAR showed that the Full personalization of
the model achieves better accuracy than traditional Transfer
Learning, although it requires more energy.

Future work concerns extending our framework to support more
layers and different optimization strategies.

life.augmented



Our technology
starts with You

beatrice.rossi@st.com
AT\ michele.craighero@polimi.it

Find out more at www.st.com

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries
For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.
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