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Ultra-low power machine learning at the edge success stories
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Join Growing tinyML Communities:
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tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

16.5k members in
49 Groups in 41 Countries

4k members 
          &
13k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML 

10.3k subscribers, 624 videos with 372k views 

http://www.youtube.com/tinyML
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Forum
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       Seoul, South Korea

Call for Presentations and Posters – Deadline August 7
https://www.tinyml.org/event/asia-2023/
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https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report
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Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Beatrice Rossi

Beatrice Rossi graduated in Mathematics and Applications 

at Università degli Studi di Milano Bicocca in 2008. Since 

then, she has been working in STMicroelectronics, System 

Research and Applications. Her research interests include 

Edge AI, Tiny Machine and Deep Learning, and Distributed 
Ledger Technology for the IoT. 



Michele Craighero

Michele Craighero graduated in Computer Science and 

Engineering at Politecnico di Milano in 2022 and he is 

currently in the first year of his PhD. His research project is 

titled “Learning and Adaptation in Distributed Environments” 

and it is a collaboration between Politecnico di Milano and 

STMicroelectronics. His research interests include Machine 

Learning techniques for Time Series Classification, Change 
Detection and Unsupervised Domain Adaptation.
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The rise of Edge AI

We are surrounded of smart devices
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Focus Applications

Industrial 

Maintenance
Condition monitoring,

Predictive maintenance.
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Healthcare and 

Wellbeing Systems
Monitoring through 

wearables, Remote 

care.

Internet of Things 

(IoT)
Smart cities, Smart 

buildings, Connected 

homes and things

Automotive 
Enhanced safety, 

efficiency, overall 

driving experience; 

BMS.
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Approach

– Exploits 3-axis accelerometer data

– Classes: stationary, walking, running, biking, driving…

1D - Convolutional Neural Network model

Example: Human Activity Recognition

HAR is a time series classification task identifying the specific 

movement or action of a person based on sensor data.  
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From on-cloud to on-device learning

Smart devices

Cloud

Model

Training

Data



From on-cloud to on-device learning

Smart devices

Cloud

Low privacy and security of data

High latency

Low personalization

Data

Model

Training

Drawbacks



From on-cloud to on-device learning

Smart devices

Cloud

Pretrained

Model

Training

Data

R
e
tra

in
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g

On-Device Learning (ODL): 

Adapt a pretrained model after 

deployment based on user’s 

interaction and newly acquired 

data.



Improve AI-

powered 

experiences 

Enable key 

features for our 

products

The benefits of ODL

Enhanced privacy and security

Lower latency

Improved accuracy:

- By Personalization

- By more sophisticated learning schemes as 

Federated Learning 



Where we are

Data and labels Solutions for efficient on-device inference 

are mature

those of learning are at their early stages 

(especially on MCUs!)

Cloud-based learning

On-device learningOn-device inference

On-device learning

Model optimization

Model quantization

Code generation

Frameworks



Enable ODL functionalities on STM32 microcontrollers

Performing backpropagation on 

MCUs is highly challenging due to 

the strict memory and computational 

constraints. 

The Challenge
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Our Contributions

1. SW framework to train 1D-CNNs on STM32 MCUs;

2. Explicit gradient computation for the several 

common network layers;

3. Memory footprint and CPU loads estimates;

4. Case study: personalization for HAR.

Seminal work presented at TinyML Summit 2023  
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CRAIGHERO, Michele, et al. 

On-Device Personalization for Human 

Activity Recognition on STM32.

IEEE Embedded Systems Letters, 2023.
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SW Framework

Training:

Orchestrator: governs 

the training procedure 

by invoking alternatively 

the Forward and 

Backward modules;

Forward: performs the 

FW pass implementing 

the forward 

expressions;

Backward: performs 

the BW pass 

implementing the 

backward expressions

Evaluation:

Performs inference and computes the loss 

Network:

Instantiates the 

network from 

topology specs;

Initializes network 

parameters 

(randomly set or 

imported from a pre-

trained model).
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Gradient Computation



Backpropagation

Loss
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Backward passForward pass

Derivatives are computed using the Multivariate 

Chain Rule

Gradient Computation
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Expressions for Layers of 1D-CNNs
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The layer function Hints
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Derivatives

gradients

local

gradients

errors

Example: Conv1D



Estimating Resources



Memory Footprint

Our SW framework is equipped with a tool that estimates the memory 

footprint and the CPU loads needed to train a given neural network.

• Model memory

• Activations memory 

• Optimizer memory: 

- Stochastic Gradient Descent: requires storing the first order momentum of each 

parameter, thus occupies the same memory as the model.

- Adam: uses the first and second order momenta of each parameters. It occupies 

2x the size of the model.

Memory Footprint
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Memory used to store network’s parameters (weights & biases and other hyperparameters) 

Not optimized, at least in this seminal work

Depends on the network’s architecture and remains constant regardless of the input or batch size

#parameters * bit precision

Not quantized, at least in this seminal work

Model Memory
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Activations Memory
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Activations Memory: Inference
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…

Forward pass

In on-device inference, activations of previous 

layers can be discarded while the computation goes 

forward (they are stored temporarily in an over-

writable buffer) 

Output



Activations Memory: Transfer Learning

Backward pass

In Out

Layer 

1
In Out

Layer 

2
In Out

Layer 

L

…

Forward pass

In Out

Layer 

L

Loss
In Transfer Learning activations of 

frozen layers can be discarded as 

corresponding gradients and errors do 

not have to be computed. 



Memory used to store the activations corresponding to the 

layers we want to train on-device. 

Depends on the network’s architecture, input and batch 

size.

#activations * bit precision

Not quantized, at least in this seminal work

Activations Memory
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CPU Load

Our SW framework is equipped with a tool that estimates the memory 

footprint and the CPU loads needed to train a given neural network.

• Depends on the type of layers we want to train

• Is derived from the explicit expressions in Table.

• Operations are performed using floating point numbers, 

thus we refer to them as FLOPs.
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CPU Load



Case Study: Personalization for HAR



Approach:

• Tri-axial accelerometer data (IMU)

• Activities: standing, sitting, walking, running, 

biking, …

• Deep learning models

Case study: Human Activity Recognition

HAR is a time series classification task which aims to identify the 

specific movement or action of a person based on inertial sensor data.  

HAR has great potential for daily life tracking, athletic training, 

healthcare and physiotherapy.



In typical HAR scenarios a vendor trains a global model by 

recruiting a large numbers of subjects and then delivers it to 

clients who target real-life applications. 

Personalize the global model with new user’s data is 

essential to improve the classification accuracy.

The global model successfully performs HAR assuming the 

same distribution between subjects and customers’ data. 

However, there always exist differences in those distributions 

due to the heterogeneity of subjects.

The global model will overfit the global dataset and cannot 

generalize on data from new users. 

Personalization in HAR
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Global model

Global dataset

New user

Personalization fine-tunes a pre-trained global model using 

data from new users …on device!



• 36 users, around 30k samples for each user

• 6 activities: walking, jogging, upstairs, 

downstairs sitting, standing

• Sampling frequency 20 Hz

ST datasetWISDM: WIreless Sensor Data Mining

• Collected using SensorTile.box

• 3 users, around 30k samples for each user

• 3 activities: walking, upstairs, downstairs (a 

subset of those of WISDM)

• Sampling frequency 27 Hz (subsampled at 20 

Hz)

https://github.com/ausilianapoli/HAR-CNN-Keras-STM32https://www.cis.fordham.edu/wisdm/dataset.php

Used to represent a domain shift from WISDM 

dataset 
Used to pretrain a global model

Datasets
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Inputs: from 1s to 5s of recordings from tri-axial accelerometer 

corresponding to inputs of shape: (20,3),(40,3),(60,3),(80,3),(100,3)

SGD optimizer, learning rate 0.01 and batch size 32

Categorical Cross-Entropy as training loss

Model architecture: 1D-CNN

1) Conv1D with F = 32 filters and kernel size K = 3 with ReLU, 

AvgPool1D

2) Conv1D of F = 64 filters and kernel size K = 3 with ReLU, 

AvgPool1D, GlobalAvgPool1D 

3) Dense of M = 50units with ReLU 

4) Dense of M = 6 units with Softmax

Total number of parameters: around 10k
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Model Architecture



Nucleo-L496ZG 

• Ultra low-power MCU STM32L496ZG

• Arm® Cortex®-M4 32-bit RISC core 

operating at a frequency of up to 80 MHz. 

• 320-Kbyte sRAM. 

Target Board
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Firmware is compiled and flashed on the board using STM32CubeIDE.



Experiment 1: WISDM Dataset

Does personalization on user-specific data improve the accuracy of a pretrained model?

Full personalization reaches the highest F1-score for all the input sizes. F1 Score (averaged on WISDM users)



Experiment 2: ST Dataset

Does personalization of a pretrained model outperform a classifier trained only

on the target user?

Full personalization reaches the highest F1-score for all the input sizes. 

Enabling the retraining of all the network’s layers is highly beneficial even when personalization is 

performed on data from a different dataset, which is common in HAR scenarios.  

F1 Score (averaged on ST users)



Estimating Resources

The memory footprint and the time needed for both Full and TL personalization are estimated 

using the tool we developed.

• Increasing the input size results in larger memory 

footprint

• All the tested cases are within the memory limitations of 

our selected device (less than 320 kB)
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Memory Footprint

• Increasing the input size results in a larger execution 

time

• However, an input size of (20, 3) is enough for reaching 

a very high accuracy

Time per batch (of 32 samples) 



Power Consumption

61

Target board

STM32L496ZG 

X-NUCLEO-LPM01A power shield
Measures the current absorbed during the training

• Consumed power is obtained by 

multiplying the measured current by the 

voltage provided (3.3 V);

• Consumed power is practically the same 

for TL and Full personalization 

procedures for any input size;

• Energy (power × time) required to 

process a single batch is higher for the 

Full personalization, since it scales 

linearly with the time.



We developed a SW framework to fine-tune and personalize 1D-

CNN on STM32 MCUs. 

We are also working on quantized training and on reducing the 

memory footprint needed to store activations.

Our experiments on HAR showed that the Full personalization of 

the model achieves better accuracy than traditional Transfer 

Learning, although it requires more energy.

Future work concerns extending our framework to support more 

layers and different optimization strategies.

Conclusions and Future Works
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