
“A TinyML Approach to Deploy Reduced-Order Model of 
Complex Systems on Microprocessor”

Brenda Zhuang – Engineering Manager, MathWorks
Greg Coppenrath – Sr. Product Marketing Manager, MathWorks

July 18, 2023



Thank you, tinyML Strategic Partners, 
for committing to take tinyML to the next Level, together



Executive Strategic Partners

3





1

Making Edge AI A Reality

Accelerate Your Edge Compute 

www.syntiant.com 

http://www.syntiant.com/


Platinum Strategic Partners

6





tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI

AT THE EDGE AT SCALE



Gold Strategic Partners

9



Witness potential made possible at analog.com.

Where what if
becomes what is.





tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories



The Leading Development 
Platform for Edge ML

edgeimpulse.com





NEUROMORPHIC 

INTELLIGENCE FOR THE 

SENSOR-EDGE

www.innatera.com







www.st.com/ai

STMicroelectronics provides extensive 

solutions to make tiny 

Machine Learning easy



© 2022 Synaptics Incorporated 19

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com



Silver Strategic Partners



Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

15.8k members in
49 Groups in 41 Countries

3.8k members 
          &
12.7k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML 

10k subscribers, 607 videos with 354k views 

http://www.youtube.com/tinyML


Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Brenda Zhuang

Dr. Brenda Zhuang is a consulting engineer and engineering 

manager at MathWorks, where she leads a team 

responsible for software tools for automatic deployment of 

embedded applications, such as motor controls and deep 

learning, to microprocessors and FPGAs. Brenda joined 

MathWorks in 2007. She received her PhD from Boston 

University in Systems Engineering. She serves 

on the technical program committee 
in control theory, modeling and simulation. 



Greg Coppenrath

Greg is the product marketing manager for Fixed-Point 

Designer and Deep Learning Toolbox Model Quantization 

Library. He has experience in the development of 

embedded systems and product development in the 

semiconductor industry. He received an MBA from 

Worcester Polytechnic Institute, an M.S. in Electrical 

Engineering from the University of Massachusetts Lowell, 
and received a B.S. in Electrical Engineering from WPI.



A TinyML Approach to Deploy 

Reduced-Order Model on Microprocessor



Meet the speakers today

Brenda Zhuang, PhD
Engineering Manager

MathWorks

Greg Coppenrath
Senior Product Manager

MathWorks



Computer Vision ToolboxSimulinkMATLAB
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Today, we cover the workflow steps from model development using 

AI-driven methodology to compression for target deployment 

Reduced-Order Model (ROM)

AI Model

Target Deployment

Model Compression
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Example overview
System-level simulation
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Requirements
Functionality and 

Architecture
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System 
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Environment model
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Requirements
Functionality and 

Architecture
Design Implementation

System 

Integration 

and Test

Integrating AI into Model-Based Design

Digital Thread

Component and 

System Acceptance

Testing

System Architecture

Behavior models

Functional spec

Subsystem 

models

Physics-based

AI & Data-driven

Algorithms

Environment model
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Real EnvironmentEnvironment model
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Containers
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AI-driven system design

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

Simulation & Test

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment
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AI for component modeling

▪ Speeding up desktop and HIL 

simulations 

▪ Modeling component dynamics from 

data when first-principles models 

cannot be obtained

AI for algorithm development

▪ Virtual sensor modeling

▪ Sensor fusion

▪ Object detection

Integrate AI models into MBD for system-level simulation and code 

generation
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Reduced Order Modeling

What

Why

▪ Techniques to reduce the 

computational complexity or storage 

requirement of a computer model

▪ Preserve the expected fidelity within a 

controlled error

▪ Speed up system-level desktop simulation

▪ Hardware-in-the-loop testing

▪ Enable system-level simulation

▪ Develop virtual sensor, Digital twins

▪ Perform control design

High-fidelity model

Reduced-Order Model (ROM)
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Dynamic

Reduced Order Modeling

Reduced order 

model

Physics-based

Model-based

Linearization

Data-driven

Static

Reduced Order 

Flexible Solid

FEM-Parametrized 

PMSM

Simulink, Curve Fitting Toolbox, 

Model-Based Calibration Toolbox

Simulink, Statistics and Machine 

Learning Toolbox, Deep Learning 

Toolbox, System Identification 

Toolbox

Focus 
today

How
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Data-driven vs. first-principles modeling

DATA-DRIVEN MODELS FIRST-PRINCIPLES MODELS

BLACK BOX WHITE BOXGREY BOX

Statistics, optimization, AI Physics, math, domain knowledge

Data-driven models and first-principles models can co-exist

Advantages
▪ May succeed when first-principles models are 

unavailable or challenging/impossible to find

▪ May reduce complexity, simulate faster

▪ Can leverage existing, measured data

▪ Do not require domain knowledge

Challenges
▪ Require a lot of data

▪ Are often not

– interpretable, explainable

– easily parameterizable in a physically meaningful way

▪ Cannot extrapolate well beyond training data

Advantages
▪ May capture (global) parameterizable 

behaviors with low/high fidelity

▪ Have clear (explainable) physical meaning

▪ Do not require data engineering

Challenges
▪ Can be challenging/impossible to derive

▪ Require significant time for derivation

▪ Require expertise in the respective 

domain
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Example overview
Replacing a first-principles engine model with an AI-based Reduced Order Model

Closed-loop control of vehicle speed

Visualization

Road 

conditions

Simulated 

driver

Vehicle 

dynamics

Controllers



42

Example overview
Replacing a first-principles engine model with an AI-based Reduced Order Model

Engine model

Simscape

Powertrain Blockset

Vehicle Dynamics Blockset

Could be 

developed in 

third-party 

tools (e.g. 

GT-POWER)

High fidelity

Complex model

Slow simulation
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Example overview
Replacing a first-principles engine model with an AI-based Reduced Order Model

Engine model

Simscape

Powertrain Blockset

Vehicle Dynamics Blockset

Could be 

developed in 

third-party 

tools (e.g. 

GT-POWER)

Inputs
Engine speed (RPM)

Ignition timing

Throttle position

Wastegate valve

Outputs
Engine Torque

AI model

BLACK BOX WHITE BOXGREY BOX
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Data Preparation AI Modeling Simulation & Test Deployment

Generate synthetic data for training

Unreal Engine®

GANs

Wireless Waveform 

Generator

Simulink/Simscape

Other techniques:
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Data Preparation AI Modeling Simulation & Test Deployment

Synthetic Data Generation
Design of Experiments

Input features
Engine speed (RPM)

Ignition timing

Throttle position

Wastegate valve

Response
Engine Torque

Vary model 
parameters

Run 
simulation

Log data
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Data Preparation AI Modeling Simulation & Test Deployment

Synthetic Data Generation
Design of Experiments
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Data Preparation AI Modeling Simulation & Test Deployment

Data-driven ROM

Dynamic

Data-Driven 

ROM

Look up table

etc.

Static Surface Fitting

LSTM

NLARX models

Neural State Space 
/ Neural ODE

etc.
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Data Preparation AI Modeling Simulation & Test Deployment

AI-based ROM using LSTMs
Capture time dependencies in time-series data

LSTMs carry a memory cell (state) throughout

▪ Engine speed (RPM)

▪ Ignition timing

▪ Throttle position

▪ Wastegate valve

Outputs

Inputs

▪ Engine torque
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Data Preparation AI Modeling Simulation & Test Deployment

AI-based ROM using LSTMs
Capture time dependencies in time-series data
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Data Preparation AI Modeling Simulation & Test Deployment

AI-based ROM using Neural State Space
Create DL-based nonlinear state-space models without having to be a deep learning expert

▪ The nonlinear state function 𝑓 and nonlinear output function 𝑔 are 

feedforward neural networks that learn from data

▪ Popularly known as Neural ODE in deep learning community

State Network (f) Output Network (g)

ቊ
ሶ𝒙 = 𝒇(𝒙, 𝒖)
𝒚 = 𝒈(𝒙, 𝒖)
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Data Preparation AI Modeling Simulation & Test Deployment

AI-based ROM using Neural State Space
Create DL-based nonlinear state-space models without having to be a deep learning expert
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Data Preparation AI Modeling Simulation & Test Deployment

Integrate your AI model for system-level simulation and test

Integration of trained AI model into Simulink System-level simulation
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Data Preparation AI Modeling Simulation & Test Deployment

Integration of trained AI models into Simulink
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Data Preparation AI Modeling Simulation & Test Deployment

System-level simulation
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Data Preparation AI Modeling Simulation & Test Deployment

Generate Library-Free C Code for Deep Learning Networks

Code 

Generation

µC
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Data Preparation AI Modeling Simulation & Test Deployment

Hardware-in-the-loop simulation
System-level integration and test

I/O

Real-time computerTarget platform

Build & download models

Adjust parameters

Monitor signals

Code generation 

from algorithm

Code generation 

from plant model
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Data Preparation AI Modeling Simulation & Test Deployment

Hardware-in-the-loop simulation
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Manage AI tradeoffs for your system

LSTM
Long Short-Term Memory 

Network

Neural SS
Neural State Space 

(Neural ODE)

Training Speed

Interpretability

Inference Speed

Model Size

Accuracy (RSME)

Results are specific to Vehicle Engine ROM example

Better Okay Worse

*     if trained using a GPU. Testing made with GPU NVIDIA A100

*
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Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment

Quantization

Pruning

Iterate over design

Compression

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

Simulation & Test

Model compression bridges the gap between AI modelling and 

embedded deployment.
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Problem Statement: Reduce model footprint and accelerate 

inference of DL models

e.g. 600 KB

e.g. 300 KB

Structural 

Compression

Data Type 

Compression

“model is 600kb and want to 

reduce it to smaller. What to do?”

DLT model
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Workflow steps to compress Deep Neural Nets

Simplify Model

Quantize Model 

Parameters

Understand 

Hardware 

Constraints

Deploy & 

Integrate

Select 

Model

Prune Deep 

Neural 

Network

1 2 3
Deep Network Designer Deep Network QuantizerPruning
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Trained Network

Evaluate importance 

of weights

Remove the least 

important weights

Continue pruning

(Fine-tuning)

Stop pruning

no

yes

Pruning algorithms follow a common process but 

can have lots of small variations

▪ Scoring

– Absolute weight value

– Gradient-based metric

– Activations-based metric

▪ Pruning criteria

– local (uniformly X% per layer)

– global (X% across whole network)

▪ Fine-tuning, yes/no

▪ Scheduling

– One-shot

– Iteratively

"Pruning Convolutional Neural Networks for Resource Efficient Inference“ 

Molchanov et al. 2017. https://arxiv.org/abs/1611.06440 

?

X

No clear 

winner 

according to 

literature 😕

Best 

practices 

available

🙂

Training

Training

Execution time

vs. effect vs. 

data required

Validation

Training

https://arxiv.org/abs/1611.06440
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Which parts of the network can be pruned?

individual connections

introduces sparsity

UNSTRUCTURED

e.g. conv. filters, 

neurons in FC layer

STRUCTURED

Pruning and Quantization for Deep Neural Network Acceleration: A Survey. Liang et al. https://arxiv.org/pdf/2101.09671.pdf
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Taylor Pruning uses gradient score and eliminates number of filters 

in convolutional layers

▪ Gradient-based method to estimate filter 

“importance” using first-order Taylor 

expansion

▪ Prune less important filters to reduce 

model size while maintaining predictive 

power

▪ STRUCTURED approach

▪ Fine-tune pruned model with data 
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Parameter Pruning zeros out lower score connections

▪ Calculate numerical scores to rank the 

connections in the network 

▪ Iteratively remove less “important” connections

▪ UNSTRUCTURED approach

Examples are: 

Magnitude Score

SynFlow Score: synaptic flow scores
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Structural pruning reduces problem dimensions via projection into 

subspace 

For example, a LSTM Networks
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Two-step approach: Projection compression with neuron PCA

Dimensionality 

reduction via projection 

into subspace

Minimize projection error via 

principal component analysis 

(PCA) of neurons

Dim 1

Dim 2 𝑸𝒓𝒂𝒏𝒅𝒐𝒎

Dim 1

Dim 2 𝑸𝒆𝒊𝒈

projected layer neuronPCA

𝑾

𝑾 is an 𝑁-by-𝑀 matrix

𝑀 𝑁

High-dimensional space 

of input and output 

neurons is underutilized
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Structural compression of LSTM layers to reduce model size
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Results from compression of LSTM layers to reduce model size

Doc Example: Compress Neural Network Using Projection
(Seq-2-One Classification on Japanese Vowels data set)

Optionally, precompute neuronPCA analysis for efficient experimentation:

-0.3%

-42%

-82%

Inference Speed (MiniBatchSize=1)

https://uk.mathworks.com/help/deeplearning/ug/compress-neural-network-using-projection.html
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Deep Network Quantizer transparently applies quantization
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Reduce learnable parameters
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Conclusion
Compress AI-based reduced-order engine model for deployment

▪ Integrate trained AI model into Simulink for system-level simulation together 

with first-principles components

▪ Generate C code and perform HIL tests

▪ Deploy compressed TinyML model to embedded target
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Thank you!

Want to learn more?

Quantization
https://www.mathworks.com/discovery/quantization.html

MATLAB for Deep Learning
https://www.mathworks.com/solutions/deep-learning.html

More applications and capabilities
https://www.mathworks.com/solutions.html

Brenda Zhuang

Model Compression 
in Deep Learning

Greg Coppenrath

@Brenda-Zhuang @GregCoppenrath

https://www.mathworks.com/discovery/quantization.html
https://www.mathworks.com/solutions/deep-learning.html
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