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Keyword Spotting – a definition

• Keyword spotting – AI/ML branch

• Process an audio signal

• Recognize a target word from a predefined set

• (to control embedded devices)
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Keyword Spotting – a definition

• Keyword spotting – AI/ML branch

• Process an audio signal

• Recognize a target word from a predefined set

• (to control embedded devices)
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MFCC DS-CNN
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92% accuracy in clean conditions

• Keyword spotting – AI/ML branch

• Process an audio signal

• Recognize a target word from a predefined set

• (to control embedded devices)

29

MFCC DS-CNN
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The problem – noisy environments

3020.06.202316.11.2023



The problem – noisy environments

• Additive background noise pollutes our signal

• Negative Signal-to-Noise ratios are common

• -10 dB

• Let us assume a Noiseless Keyword Spotting model

• Can a NL-KWS system still recognize the word?

3116.11.202320.06.2023



Can a KWS system still recognize the words?

• Accuracy drops between 12% and 52%

• Stationary vs non-stationary noises

• Speech noise

• @ 0 dB – 43% accuracy loss

• Hard to separate target from noise

3220.06.202316.11.2023



Noise-Aware Keyword Spotting

• NL-KWS vs NA-KWS

• Augment training samples with diverse 
noise types (and SNRs…)

• Improved results

• Between 10% and 34% over NL-KWS
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Noise-Aware Keyword Spotting

• NL-KWS vs NA-KWS

• Augment training samples with diverse 
noise types (and SNRs…)

• Improved results

• Between 10% and 34% over NL-KWS

• -4% on Silence
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Can we improve KWS accuracy 
through direct noise exposure?



Can we improve KWS accuracy 
through direct noise exposure?

On-Device Domain Adaptation



On-Device Domain Adaptation – the methodology

1. Noise-Aware Keyword Spotting

• Data augmentation for improved generalization

• Google Speech Commands v2 x DEMAND

37

1 NA-KWS
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On-Device Domain Adaptation – the methodology

1. Noise-Aware Keyword Spotting

2. Deployment

• Store pre-recorded utterances

• Deploy KWS model on target MCU

38
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On-Device Domain Adaptation – the methodology

1. Noise-Aware Keyword Spotting

2. Deployment

39

1

2

NA-KWS
NA-KWS

3.    Noise exposure

• Record on-site noise

• Augment pre-recorded samples

3
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On-Device Domain Adaptation – the methodology

1. Noise-Aware Keyword Spotting

2. Deployment

40
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2

NA-KWS
ODDA

3.  Noise exposure

4.  ODDA [1]

• Refine NA-KWS using augmented utterances

4
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4. ODDA – Refine NA-KWS using augmented utterances

Add date or a third information here 41
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a. Combine additive
background noise
with pre-recorded
utterances

b. Compute CE loss
using partially frozen
model prediction

c. Selectively update
model parameters
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Exposure to environmental noise for specialization

On-Device Domain Adaptation

1. Pretrain a Noise-Aware Keyword Spotting network

2. Deploy NA-KWS (and clean utter.) on embedded device

3. Augment utterances with recorded environmental noise

4. Refine the network’s parameters on the target platform

5. Recognize utterances with domain-adapted KWS system

Add date or a third information here 4216.11.2023



Modelling ODDA

43

Google Speech Commands v2
(GSCv2)[2]

• 1-second audio @ 16 kHz sample rate

• silence & unknown – 10% 

• NA-KWS/ODDA:validation:test – 80:10:10

Diverse Environments Multichannel
Acoustic Noise Database

(DEMAND)[3]

• 18 noises in real-world conditions

• 5 LOO settings
• cafeteria, meeting, metro, restaurant, washing 

• SNR: {-10, 10} dB

yes, no, up, down, 

left,  right, stop, go, on, 

off  + silence + 

unknown

20.06.202316.11.2023



How well does ODDA perform?



ODDA – Qualitative analysis

• t-SNE visualization of 
pre-classifier features

• meeting noise

45

NL-KWS ODDA

NA-KWS
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Exposure to env. noise       feature separation

46

• Yes, stop, down

• Marginal improvements

NL-KWS ODDA

NA-KWS
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• Unknown, up, off, on

• Significant 
improvements

NL-KWS ODDA

NA-KWS

Exposure to env. noise       feature separation
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• On, off

• No, go

• Short, phonetically 
similar 

NL-KWS ODDA

NA-KWS

Exposure to env. noise       feature separation
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ODDA offers accuracy improvements on any noise…

• For 0 dB SNRs

• 12% improvement on meeting 
over NA-KWS

• +30% over NL-KWS

• 37% improvement on restaurant

over NL-KWS

• +3% over NA-KWS
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… and any SNR

• For 0 dB SNRs

• 12% improvement on meeting 
over NA-KWS

• +30% over NL-KWS

• 37% improvement on restaurant

over NL-KWS

• +3% over NA-KWS

• ODDA’s effect scales with SNR

• 5-6% to <1%

5020.06.2023

SNRtest

-10 0 30 AVG

SNRODDA

[-10,10] 59.68 80.96 85.86 79.23

0 54.34 81.87 87.71 79.29

[0,10] 51.52 81.06 88.93 76.49

NA-KWS 49.10 75.85 87.61 74.49

16.11.2023



… and any SNR

• For 0 dB SNRs

• 12% improvement on meeting 
over NA-KWS

• +30% over NL-KWS

• 37% improvement on restaurant

over NL-KWS

• +3% over NA-KWS

• ODDA’s effect scales with SNR

• 5-6% to <1%

• Up to 10% for known env. SNR

5120.06.2023

SNRtest

-10 0 30 AVG

SNRODDA

[-10,10] 59.68 80.96 85.86 79.23

0 54.34 81.87 87.71 79.29

[0,10] 51.52 81.06 88.93 76.49

NA-KWS 49.10 75.85 87.61 74.49
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Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH Zürich
Gloriastrasse 35
Zürich, Switzerland

DEI – Universitá di Bologna
Viale del Risorgimento 2
Bologna, Italy



We are improving accuracy, 
but at what cost?



TinyML constraints

• (Extreme) Edge AI/ML

• Embedded, miniaturized devices

• Limited storage (e.g., model parameters)

• Limited memory (e.g., activations, gradients)

• Real-time operation

• Limited computational resources

• Maximize throughput, minimize latency

• Always-on, battery operated devices

• (Ultra-) Low-Power systems

Add date or a third information here 5416.11.2023



Resource-constrained ODDA

Add date or a third information here 55

Storage

• 120 MB – 310 samples/class

• +3% over NA-KWS

• +5% on meeting with 3 MB

• Increasing model size

• +3.7% for M model

•  +5% for L model

3%
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Resource-constrained ODDA

Add date or a third information here 56

Storage

• 120 MB – 310 samples/class

• +3% over NA-KWS

• +5% on meeting with 3 MB

• Increasing model size

• +3.7% for M model

•  +5% for L model

3%

 

Memory

• +1.7% by refining the only classifier

• 10 kB (i.e., parameters, activations)

1.7%

16.11.2023



Model deployment for On-Device Domain Adaptation

Add date or a third information here 57

int16

1-second @16 kHz

float16

window length = 640 ms
window hop = 320 ms

10 MFC coefficients

int8

NEMO[4] quantization
DORY[5] deployment

float32

PULP-TrainLib[6] deployment
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Model deployment for On-Device Domain Adaptation

Add date or a third information here 58

int16

1-second @16 kHz

float16

window length = 640 ms
window hop = 320 ms

10 MFC coefficients

int8

NEMO[4] quantization
DORY[5] deployment

float32

PULP-TrainLib[6] deployment

                                   

• Fully Connected structure

• 64 input neurons

• 12 output neurons

• 768 weights

• PULP-Trainlib

• Softmax

• Cross-Entropy loss

16.11.2023



On-Device Domain Adaptation target: GAP9

Add date or a third information here 59

Cluster 
DMA

Compute Cluster w/ CNN acceleratorFC Domain

NE16 CNN 
Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU
L1 TCDM Memory 

[128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl 
(Core 9)

Periph 
uDMA

LUT 
Decomp

Core
1

Core
2

Core
3

Core
4

GAP9 Architecture

• 4 frequency domains

• Hierarchical memory 
architecture

• Heterogeneous compute 
units

• 10 general purpose RISC-V cores

• 4 shared FPUs

16.11.2023



On-Device Domain Adaptation target: GAP9

Add date or a third information here 60

GAP9Mod

• GAP9 chip

• Octal-SPI RAM   (32 Mbit)

• Octal-SPI Flash (256 Mbit)

16.11.2023



On-Device Domain Adaptation target: GAP9

Add date or a third information here 6116.11.2023

• Evaluation Kit

• Audio Add-On

• 4 PDM microphones

• 2 DAC+amplifier



ODDA pipeline on GAP 9 – a practical example

1. Flash pre-recorded .WAVs, model parameters

2. Streaming inference

1. Always-on recording using Audio Add-on mic(s)

2. MFCC computation using FPUs

3. Backbone inference on 9-core cluster

4. Classification using 9-core cluster

3. On-Device Domain Adaptation

1. Record on-site noise, augment pre-recorded samples

2. MFCC computation using FPUs

3. Backbone inference on 9-core cluster

4. Classification using 9-core cluster

5. Compute loss, compute gradients, update weights

Add date or a third information here 6216.11.2023



GAP9 in ultra-low-power mode (fFC=50 MHz, fCL=50 MHz, Vdd=650 mV)

• Inference triggered every 50 ms; energy consumption as low as 1.36 mJ

• For 1 sample/class for evaluation and 10 samples/class for training:

• Training process completes in 7.4 s

• ODDA (incl. evaluation and data acquisition) – energy consumption of 117.5 mJ

ODDA pipeline on GAP 9 – a practical example

Step Data acq. MFCC Backbone Classifier Inference

Latency [ms] 50 20.9 26.4 1.6 50

Energy  [mJ] 0.54 0.34 0.46 0.02 1.36

Add date or a third information here 63

Step Data prep. MFCC Backbone Classifier Update Training

Latency [ms] 2.5 20.9 26.4 1.6 2.3 53.7

Energy  [mJ] 0.03 0.34 0.46 0.02 0.03 0.88

16.11.2023



Conclusions

• ODDA improves over NA-KWS by specializing on the target noise

• Accuracy gains up to 12% over NA-KWS, 37% over NL-KWS at 0 dB for DS-CNN S

• Average gains of 10% over NA-KWS for – 10 dB

• Enables inexpensive on-device learning

• 100 samples (3 MB) for +5% on meeting

• As little as 10 kB of memory

• Demonstrates practical value on GAP9

• 0.88 mJ per training epoch

• ODDA completes in 7.4 s, requiring as low as 118 mJ

Add date or a third information here 6416.11.2023
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