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Italy. One year before his graduation, he joined SGS-THOMSONS (now 
STMicroelectronics) as interns on Advanced Multimedia Architectures, and he worked 
on memory reduced HDMAC HW design. Then MPEG2 video memory reduction. 
Next, on video coding, transcoding, embedded 2/3D graphics, and computer vision. 
Currently, his work focuses on developing solutions for tiny machine learning tools.
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Reduce activations, not trainable parameters for 
efficient on-device learning1

1H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters 

for efficient on-device learning,” in Advances in Neural Information 

Processing Systems, vol. 33, 2020
3
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Reduce activations, not trainable parameters for 
efficient on-device learning1

1H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters 

for efficient on-device learning,” in Advances in Neural Information 

Processing Systems, vol. 33, 2020
4
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Backpropagation

5

target

𝐿 → ∇𝐿

previous
Output or

next
NL NL

𝑧𝑙 𝑎𝑙 𝑧𝐿 𝑎𝐿

𝑊𝑙 𝑊𝐿 𝑜𝑟 (𝑙+1)

𝜎′(𝑍𝐿)

GT = ground truth
NL = non-linearity
L = Loss

𝑎𝑙−1

𝛿𝑙 𝛿𝐿 𝑜𝑟 (𝑙+1)

Activations are computed for each 

layer and stored into memory • The loss is calculated w.r.t. the ground truth and the final output; 

• The gradient of the loss in then computed; 

• Then, the derivative of the output activations 𝑧𝑙
• Finally, the derivative of the loss function for the output layer is 

computed as Hadamard product

in reverse pipeline order, the derivative of the loss 

function of the previous layer is computed as: 

- the weights by the derivative of next layer

- the Hadamard product of the derivative of the the 

output activations 𝑧𝑙  of the previous layer

the derivative of previous step is multiplied to the 

input activations of the previous layer 𝑎𝑙−1  to 

compute the variation of the weights that are 

added to update the weights of the previous layer









MCUNetV32

2J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, 

“On-device training under 256kb memory,” 2022. [Online]. 

Available: https://arxiv.org/abs/2206.15472
10

State of art on ODL

CNN learning in only 

256KiB SRAM

Visual Wake Words
QAS (Quantization Aware Scaling): 

mitigated the backprop instability due 

to the int8 quantization error during 

training



MCUNetV32
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2J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, 

“On-device training under 256kb memory,” 2022. [Online]. 

Available: https://arxiv.org/abs/2206.15472

Sparse Update: 

• updates only some parameters of the model. 

• these parameters are selected offline according to how 

much they contribute to reduce the error during training. 

• it needs to store only the intermediate activations of such 

parameters



Hardware acceleration is the use of 

computer hardware designed to 

perform specific functions more 

efficiently when compared to 

software running on a general-

purpose central processing unit 

(CPU). *

Hardware acceleration

* https://en.wikipedia.org/wiki/Hardware_acceleration

Application Hardware accelerator Acronym

Computer graphics

•General-purpose computing on 

GPU

•CUDA architecture

•Ray-tracing hardware

•GPGPU

•CUDA

•RTX

Digital signal processing Digital signal processor DSP

Analog signal processing
•Field-programmable analog 

arrayField-programmable RF
•FPAAFPRF

Sound processing Sound card and sound card mixer N/A

Computer networking on a chip

•Network processor and network 

interface controller Network on a 

chip

•NPU and NICNoC

CryptographyEncryption

Attack

Random number generation

•Cryptographic 

accelerator and secure 

cryptoprocessorHardware-based 

encryption

•Custom hardware attack

•Hardware random number 

generator

N/A

Artificial intelligenceMachine 

vision/computer vision

Neural networks

Brain simulation

•AI acceleratorVision processing 

unit

•Physical neural network

•Neuromorphic engineering

•N/AVPU

•PNN

•N/A

Multilinear algebra Tensor processing unit TPU

Physics simulation Physics processing unit PPU

Regular expressions[16] Regular expression coprocessor N/A

Data compression[17] Data compression accelerator N/A

In-memory processing
Network on a chip and Systolic 

array
NoC; N/A

Data processing Data processing unit DPU

Any computing task

•Computer hardwareField-

programmable gate arrays[18]

•Application-specific integrated 

circuits[18]

•Complex programmable logic 

devices

•Systems-on-Chip

•HW (sometimes)FPGA

•ASIC

•CPLD

•SoC

https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Ray-tracing_hardware
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Analog_signal_processing
https://en.wikipedia.org/wiki/Field-programmable_analog_array
https://en.wikipedia.org/wiki/Field-programmable_analog_array
https://en.wikipedia.org/wiki/Field-programmable_RF
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Sound_card
https://en.wikipedia.org/wiki/Sound_card_mixer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Network_processor
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Cryptographic_accelerator
https://en.wikipedia.org/wiki/Cryptographic_accelerator
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Hardware-based_encryption
https://en.wikipedia.org/wiki/Hardware-based_encryption
https://en.wikipedia.org/wiki/Custom_hardware_attack
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Brain_simulation
https://en.wikipedia.org/wiki/AI_accelerator
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Physical_neural_network
https://en.wikipedia.org/wiki/Neuromorphic_engineering
https://en.wikipedia.org/wiki/Multilinear_algebra
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Computational_physics
https://en.wikipedia.org/wiki/Physics_processing_unit
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-wellho-16
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-17
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Data_processing_unit
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-Farabet-18
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-Farabet-18
https://en.wikipedia.org/wiki/Complex_programmable_logic_device
https://en.wikipedia.org/wiki/Complex_programmable_logic_device


Edge AI drives 
hardware for on-
device machine 
learning inference.

@article{Reuther2019SurveyAB, title={Survey and 

Benchmarking of Machine Learning Accelerators}, author={A. 

Reuther and Peter Michaleas and Michael Jones and Vijay 

Gadepally and Siddharth Samsi and Jeremy Kepner}, 

journal={2019 IEEE High Performance Extreme Computing 

Conference (HPEC)}, year={2019}, pages={1-9}, 

url={https://api.semanticscholar.org/CorpusID:201668230} }

Tiny ML hardware 
(today) is optimized 
for forward workloads

1

2



.

Forward-Forward and PEPITA



Learning: biological plausibility

❏ The brain learns by modifying the 

synaptic individual connections between 

neurons3

❏ It’s not known how the single 

modifications are coordinated to achieve a 

global’s goal

❏ Loop-based neuron circuits seems used 

to get error signals and credits (i.e. how 

much each synapse contributes to the 

error) assigned to other synapsis of 

neurons

3T. Lillicrap, A. Santoro, L. Marris, C. Akerman, and G. 

Hinton,“Backpropagation and the brain,” Nature Reviews Neuroscience, 

vol. 21, no. 6, p. 335–346, 2020.

3 neurons in a loop
Not a loop



Our brain does not use backpropagation4

Backpropagation vs bio-plausibility?

16

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p. 

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0



Our brain does not use backpropagation4

1. No weight symmetry

a) error is not projected back using the 

same weights of the forward pass

17

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p. 

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0



Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

a) intermediate activations are not stored

18

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p. 

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0



Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

3. No locality of the loss function

a) Neurons do exchange error signals and 

credits within loops

b) Synapsis learn from local signals

19

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p. 

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0



Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

3. No locality of the loss function

4. No Update-locking

a) No need to wait the end of the backward 

pass to update the weights of the layers

b) There is no backward pass

20

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p. 

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0



Biologically plausible method Citation

DRTP Direct Random Target Projection

C. Frenkel, M. Lefebvre and D. Bol, "Learning without feedback: Fixed Random 

Learning Signals Allow for Feedforward Training of Deep Neural Networks," Frontiers 

in Neuroscience, vol. 15, no. 629892, 2021. doi: 10.3389/fnins.2021.629892

GEVB Global Error Vector Broadcasting

Clark, David, L. F. Abbott, and SueYeon Chung. "Credit assignment through 

broadcasting a global error vector." Advances in Neural Information Processing 

Systems 34 (2021): 10053-10066.

WM Weight Mirroring

Akrout, Mohamed, et al. "Deep learning without weight transport." Advances in neural 

information processing systems 32 (2019).

FA Feedback Alignment

Lillicrap, Timothy P., et al. "Random feedback weights support learning in deep neural 

networks." arXiv preprint arXiv:1411.0247 (2014).

DFA Direct Feedback Alignment

Nøkland, Arild. "Direct feedback alignment provides learning in deep neural 

networks." Advances in neural information processing systems 29 (2016).

DFC Deep Feedback Control

Meulemans, Alexander, et al. "Credit assignment in neural networks through deep 

feedback control." Advances in Neural Information Processing Systems 34 (2021): 

4674-4687.

CLAPP Contrastive Local And Predictive 

Plasticity

Illing, Bernd, et al. "Local plasticity rules can learn deep representations using self-

supervised contrastive predictions." Advances in Neural Information Processing 

Systems 34 (2021): 30365-30379.

A lot of work in 30 years…

DFC

FA

DFA

CLAPP

GEVB

WM

21

DRTP
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Forward-Forward

Hinton, Geoffrey. "The forward-forward algorithm: Some preliminary 

investigations." arXiv preprint arXiv:2212.13345 (2022).

Present the Error to Perturb the Input To 

modulate Activity Dellaferrera, Giorgia, and Gabriel Kreiman. "Error-driven input modulation: solving 

the credit assignment problem without a backward pass." International Conference on 

Machine Learning. PMLR, 2022.

A lot of work in 30 years…

DFC

FA

DFA

CLAPP

GEVB

WM

FF

PEPITA 22
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Forward-Forward5

23
5G. Hinton, “The forward-forward algorithm: Some preliminary 

investigations,” ArXiv, vol. abs/2212.13345, 2022.

Positive weight update of each layer 

independently from the next ones 

(locality)
Forward 

inference

Activations of 

each layer are 

normalized

Forward 

inference

Positive

data
Negative

data

Negative weight update of each layer 

independently from the next ones 

(locality)

Activations of 

each layer are 

normalized



log(p)

layer normalizationNL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

Forward-Forward5

▪ The goodness function G(𝑎𝑙) is defined 

at each layer; e.g. it can be the sum of the 

squared 𝑎𝑙 activations

▪ The probability of being classified as a 

positive data is

▪ Then maximize the log(𝑝) for positive data 

and minimize it for negative
𝑊𝑙

▪ 2 variants: supervised and unsupervised 

→ same learning procedure, different 

forward procedures

▪ Supervised variant: n passes, for n

classes

5G. Hinton, “The forward-forward algorithm: Some preliminary 

investigations,” ArXiv, vol. abs/2212.13345, 2022.





PEPITA6

26

6G. Dellaferrera and G. Kreiman, “Error-driven input modulation: 

Solving the credit assignment problem without a backward pass,” 

ArXiv, vol. abs/2201.11665, 2022.

Compute the 

error at the output

Random matrix F, with zero 

mean and small variance, to 

project the error on the inputs

Weights update by using the 

forward pass computed activations 

(stored in memory #) with the 

modulated ones

Forward inference

Store activations #

Forward inference

Store activations #



PEPITA6

27

a_l –a_l^(err)

layer NL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

W_l

layer NL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

W_l

err err err

6G. Dellaferrera and G. Kreiman, “Error-driven input modulation: 

Solving the credit assignment problem without a backward pass,” 

ArXiv, vol. abs/2201.11665, 2022.

Standard pass

Modulated pass





.Research question

29

At which computational and memory cost 

would FF and PEPITA learning algorithms compare 

to BP if applied to MLCommons/Tiny benchmarks ?

29



Contributions today

30

Introducing MEMPEPITA to not store 

intermediate activations. Memory savings 

expected !

Computational complexity and memory footprint 

of FF, PEPITA and MEMPEPITA for the 

MLCommons/Tiny benchmarks



MEMPEPITA

31

Forward inference

Forward inference

Introduces a second standard pass which runs 

simultaneously along with modulated pass

Weights update by using the forward 

pass re-computed activations with 

the modulated ones

Compute the 

error at the output

Random matrix F, with zero mean and 

small variance, to project the error 

onto the inputs

Forward inferences 

thus recomputing 

activations instead 

of storing them into 

memory

Introduces a second standard pass which runs 

simultaneously along with modulated pass



MEMPEPITA
Standard Pass

Modulated 

Pass

Error projection

Standard Pass

Parameters 

Update



Summary of the learning procedures

33

Method BP 

(number)

FF

(number)

PEP

(number)

MPE

(number)

Forward 

passes

1 2 2 3

Backward 

passes

1 0 0 0

Weight 

update

1 2 1 1

Loss function Global Local Global Global

Activations all current all current

PEP = PEPITA

MPE = MEMPEPITA

Local = loss function per layer

Global = loss function at the output layer

All = all layers

Current = current layer



Methodology



MLCommons/Tiny

35
https://github.com/mlcommons/tiny

Use Case Description Dataset Model Quality Target 

(Closed Division)

Audio Wake Words Small vocabulary 

keyword spotting

Speech Commands DS-CNN 90% (Top1)

Visual Wake Words Image classification 

(2 classes)

Person Detection MobileNet 80% (Top1)

Image 

Classification

32x32 tiny Images 

Classification (10 

classes)

Cifar10 ResNet 85% (Top1)

Anomaly Detection Detecting 

anomalies in 

machine operating 

sounds

ToyADMOS Deep AutoEncoder 0.85 (AUC)



MCU deployability

▪ MLCommons/Tiny framework specifies number of 

samples and epochs

▪ Weights, biases, activations represented in INT8

▪ Softmax layer represented in FLOAT32

▪ MACCs represented in INT8

▪ No layer memory overwrite

▪ Batch normalization not considered.

▪ 𝐶𝑦𝑐𝑙𝑒𝑠/𝑀𝐴𝐶𝐶 and processor’s frequency

▪ Results validated with STM32Cube.AI Developer Cloud

36

STM32H735G-DK

550MHz

NUCLEO-G474RE

170MHz

https://stm32ai-cs.st.com/home
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Complexity analisys: Assumptions

Comput

ations

required

Forward 

pass

Error at 

output 

layer

Backward 

pass

Weight 

update

Goodness 

function

Normalization Error 

projection

BP 1 1 1 1

FF 2 2 2 2

PEP 2 1 1 1

MPE 3 1 1 1



RAM estimation

38

Learning procedure Activations RAM during training

BP and PEP Sum of the activation buffers of all layers

FF Max value of the sum of the activation buffers of two consecutive layers + the 

input sample

MPE Max value of the sum of the activation buffers of two consecutive layers + the 

largest activation buffer between these two layers

𝐓𝐨𝐭𝐚𝐥 𝑹𝑨𝑴 = 𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝒔 𝑹𝑨𝑴 + 𝒇𝒐𝒐𝒕𝒑𝒓𝒊𝒏𝒕 (𝒘𝒆𝒊𝒈𝒉𝒕𝒔 + 𝒃𝒊𝒂𝒔𝒆𝒔)



Results
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Learning procedure: the analysis

40

Model/Dataset DS-CNN/SC/KWS MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS/Anomaly Detection

Learning method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Training

MAC

C (M)
7.7 +43% +4% +39% 22 +41% +3% +37% 37 +36% +1% +35% 0.7 +50% +69% +106%

ACT 

(KiB)

+253

%
21 +253% +37% +213% 83 +213% +11% +118% 52 +118% +57% +64% 1.4 +64% 1.4

PAR/

ACT
0.3 1.1 0.3 0.8 0.8 2.5 0.8 2.3 0.7 1.5 0.7 0.9 115 189 115 189

RAM 

(KiB)

+120

%
43 +120% +17% +60% 294 +60% +3% +47% 130 +47% +23% +0.3% 267 +0.3% 267

Architecture CNN FC(AE)

Learning method FF PEP MPE FF PEP MPE

Train

MACC +40% +3% +37% +50% +69% +106%

ACT -65% 0% -51% -39% 0% -39%

RAM -41% 0% -33% -0.3% 0% -0.3%

averaged



Inference procedure: the analysis

41

Model/Dataset DS-CNN/SC MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS

Inference method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Inferen

ce

MACC 

(M)
3

+1167

%
3 3 8 +113% 8 8 13 +914% 13 13 0.3 0.3 0.3 0.3

RAM 

(KiB)
20 +2.4% 20 20 55 +50% 55 55 49 +6% 49 49 0.8 0.8 0.8 0.8

ROM 

(KiB)
22.604 210.85 77.706 265.864

CNN FC(AE)

Inference method FF PEP MPE FF PEP MPE

Inference

MACC +731% 0% 0% +1% 0% 0%

RAM +20% 0% 0% 0% 0% 0%

averaged
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Model/Dataset DS-CNN/SC MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS

Learning method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Training 

(ms)

H7 42 +43% +4% +39% 122 +41% +3% +37% 202 +36% +1% +35% 4 +50% +69% +106%

G4 203 +43% +4% +39% 592 +41% +3% +37% 982 +36% +1% +35% 19 +50% +69% +106%

Inference

(ms)

H7 14.5
+1165

%
14.5 14.5 42 +113% 42 42 68 +914% 68 68 1.4 +1% 1.4 1.4

G4 71
+1165

%
71 71 202 +113% 202 202 332 +914% 332 332 7 +1% 7 7

H7 = STM32H735G-DK @ 550 MHz

G4 = NUCLEO-G474RE @ 170 MHz



▪ LEARNING → FF and MEMPEPITA 

▪ reduced activations (ACT) storage on average 40% to 65% (w.r.t. BP), 

▪ increased MACCs 40% to 100%

▪ PEPITA (same memory as BP) increased MACCS (CNN) 3%, (FC) 69%.

▪ Total RAM reduction is noticeable if the topology has low 

parameters/activations (FC vs CNN). → e.g. for DS-CNN is 0.3 and RAM 

reduction is around -100%

▪ INFERENCE → MEMPEPITA, PEPITA and BP featured 1 forward pass, while 

supervised FF adds 2-3x more computation due to N forward passes, for N 

classes
43

Take-aways
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About training → MEMPEPITA reduced total 

RAM, (CNN) 33%, (FC) 0.3%, at the expense of a 

third more MACCs. 

Inference complexity was unchanged

REMEMBER



Github repo

45

https://github.com/fabrizioaymone/suitability-of-Forward-Forward-and-PEPITA-learning 

https://github.com/fabrizioaymone/suitability-of-Forward-Forward-and-PEPITA-learning


.

Q&A
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Further questions ? Please contact: danilo.pau@st.com
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