
“Suitability of Forward-Forward and PEPITA Learning to
MLCommons-Tiny benchmarks”

Danilo Pau – Technical Director, IEEE, AAIA & ST Fellow STMicroelectronics

September 19, 2023

Thank you, tinyML Strategic Partners,
for committing to take tinyML to the next Level, together

Executive Strategic Partners

11

1

Making Edge AI A Reality

Accelerate Your Edge Compute

www.syntiant.com

http://www.syntiant.com/

Platinum Strategic Partners

14

tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI

AT THE EDGE AT SCALE

Gold Strategic Partners

16

Witness potential made possible at analog.com.

Where what if
becomes what is.

tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

The Leading Development
Platform for Edge ML

edgeimpulse.com

NEUROMORPHIC
INTELLIGENCE FOR THE

SENSOR-EDGE

www.innatera.com

www.st.com/ai

STMicroelectronics provides extensive

solutions to make tiny

Machine Learning easy

© 2022 Synaptics Incorporated 25

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com

Silver Strategic Partners

Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

16.8k members in
49 Groups in 41 Countries

4k members
 &
13k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/

Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

10.4k subscribers, 627 videos with 378k views

http://www.youtube.com/tinyML

5

tinyML Asia

Technical Forum

 November 16, 2023
 Seoul, South Korea

Register now
 https://www.tinyml.org/event/asia-2023/

6

https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Danilo Pau
Danilo PAU (h-index 26, i10-index 69) graduated in 1992 at Politecnico di Milano,
Italy. One year before his graduation, he joined SGS-THOMSONS (now
STMicroelectronics) as interns on Advanced Multimedia Architectures, and he worked
on memory reduced HDMAC HW design. Then MPEG2 video memory reduction.
Next, on video coding, transcoding, embedded 2/3D graphics, and computer vision.
Currently, his work focuses on developing solutions for tiny machine learning tools.

Since 2019 Danilo is an IEEE Fellow and AAIA on 2023; he served as Industry
Ambassador coordinator for IEEE Region 8 South Europe, was vice-chairman of the
“Intelligent Cyber-Physical Systems” Task Force within IEEE CIS, was IEEE R8 AfI
member in charge of internship initiative. Today he is a Member of the Machine
Learning, Deep Learning and AI in the CE (MDA) Technical Stream Committee
CESoc. He was AE of IEEE TNNLS. He wrote the IEEE Milestone on Multiple Silicon
Technologies on a chip, 1985 which was ratified by IEEE BoD in 2021 and IEEE
Milestone on MPEG Multimedia Integrated Circuits, 1984-1993 which was ratified in
2022. He served as TPC member to TinyML EMEA forum and is the chair of the
TinyML on Device Learning working group. He serves as 2023 IEEE Computer
Society Fellow Evaluating Committee Members

With 78 and 68 respectively European and US application patents, 157 publications,
113 ISO/IEC/MPEG authored documents and 67 invited talks/seminars at various
Universities and Conferences, Danilo's favorite activity remains supervising
undergraduate students, MSc engineers and PhDs.

Fabrizio Aymone

Fabrizio M. Aymone is currently pursuing a Bachelor

degree in Electronics Engineering at Politecnico di Milano.

He is also intern at the System Research and Applications

department of STMicroelectronics, where he is studying

solutions for On-Device Learning in the domain of tiny

devices. His research interests focus on reducing memory

usage and computational complexity of AI algorithms and
exploring alternative learning rules to backpropagation.

Suitability of Forward-
Forward and PEPITA
Learning to
MLCommons-Tiny
benchmarks

Danilo P. Pau and Fabrizio M. Aymone

Sept, 19 2023

Agenda

1 Back-propagation

2 On-Device Learning

3
Forward-Forward and
PEPITA

4 The research question

5 Methodology and Results

6 Takeways

7 Future works

8 Q&A

2

Reduce activations, not trainable parameters for
efficient on-device learning1

1H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters

for efficient on-device learning,” in Advances in Neural Information

Processing Systems, vol. 33, 2020
3

MbV2

Reduce activations, not trainable parameters for
efficient on-device learning1

1H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters

for efficient on-device learning,” in Advances in Neural Information

Processing Systems, vol. 33, 2020
4

.

Backpropagation

5

target

𝐿 → ∇𝐿

previous
Output or

next
NL NL

𝑧𝑙 𝑎𝑙 𝑧𝐿 𝑎𝐿

𝑊𝑙 𝑊𝐿 𝑜𝑟 (𝑙+1)

𝜎′(𝑍𝐿)

GT = ground truth
NL = non-linearity
L = Loss

𝑎𝑙−1

𝛿𝑙 𝛿𝐿 𝑜𝑟 (𝑙+1)

Activations are computed for each

layer and stored into memory • The loss is calculated w.r.t. the ground truth and the final output;

• The gradient of the loss in then computed;

• Then, the derivative of the output activations 𝑧𝑙
• Finally, the derivative of the loss function for the output layer is

computed as Hadamard product

in reverse pipeline order, the derivative of the loss

function of the previous layer is computed as:

- the weights by the derivative of next layer

- the Hadamard product of the derivative of the the

output activations 𝑧𝑙 of the previous layer

the derivative of previous step is multiplied to the

input activations of the previous layer 𝑎𝑙−1 to

compute the variation of the weights that are

added to update the weights of the previous layer

MCUNetV32

2J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han,

“On-device training under 256kb memory,” 2022. [Online].

Available: https://arxiv.org/abs/2206.15472
10

State of art on ODL

CNN learning in only

256KiB SRAM

Visual Wake Words
QAS (Quantization Aware Scaling):

mitigated the backprop instability due

to the int8 quantization error during

training

MCUNetV32

11

2J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han,

“On-device training under 256kb memory,” 2022. [Online].

Available: https://arxiv.org/abs/2206.15472

Sparse Update:

• updates only some parameters of the model.

• these parameters are selected offline according to how

much they contribute to reduce the error during training.

• it needs to store only the intermediate activations of such

parameters

Hardware acceleration is the use of

computer hardware designed to

perform specific functions more

efficiently when compared to

software running on a general-

purpose central processing unit

(CPU). *

Hardware acceleration

* https://en.wikipedia.org/wiki/Hardware_acceleration

Application Hardware accelerator Acronym

Computer graphics

•General-purpose computing on

GPU

•CUDA architecture

•Ray-tracing hardware

•GPGPU

•CUDA

•RTX

Digital signal processing Digital signal processor DSP

Analog signal processing
•Field-programmable analog

arrayField-programmable RF
•FPAAFPRF

Sound processing Sound card and sound card mixer N/A

Computer networking on a chip

•Network processor and network

interface controller Network on a

chip

•NPU and NICNoC

CryptographyEncryption

Attack

Random number generation

•Cryptographic

accelerator and secure

cryptoprocessorHardware-based

encryption

•Custom hardware attack

•Hardware random number

generator

N/A

Artificial intelligenceMachine

vision/computer vision

Neural networks

Brain simulation

•AI acceleratorVision processing

unit

•Physical neural network

•Neuromorphic engineering

•N/AVPU

•PNN

•N/A

Multilinear algebra Tensor processing unit TPU

Physics simulation Physics processing unit PPU

Regular expressions[16] Regular expression coprocessor N/A

Data compression[17] Data compression accelerator N/A

In-memory processing
Network on a chip and Systolic

array
NoC; N/A

Data processing Data processing unit DPU

Any computing task

•Computer hardwareField-

programmable gate arrays[18]

•Application-specific integrated

circuits[18]

•Complex programmable logic

devices

•Systems-on-Chip

•HW (sometimes)FPGA

•ASIC

•CPLD

•SoC

https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Ray-tracing_hardware
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Analog_signal_processing
https://en.wikipedia.org/wiki/Field-programmable_analog_array
https://en.wikipedia.org/wiki/Field-programmable_analog_array
https://en.wikipedia.org/wiki/Field-programmable_RF
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Sound_card
https://en.wikipedia.org/wiki/Sound_card_mixer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Network_processor
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Cryptographic_accelerator
https://en.wikipedia.org/wiki/Cryptographic_accelerator
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Hardware-based_encryption
https://en.wikipedia.org/wiki/Hardware-based_encryption
https://en.wikipedia.org/wiki/Custom_hardware_attack
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Brain_simulation
https://en.wikipedia.org/wiki/AI_accelerator
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Vision_processing_unit
https://en.wikipedia.org/wiki/Physical_neural_network
https://en.wikipedia.org/wiki/Neuromorphic_engineering
https://en.wikipedia.org/wiki/Multilinear_algebra
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Computational_physics
https://en.wikipedia.org/wiki/Physics_processing_unit
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-wellho-16
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-17
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Data_processing_unit
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-Farabet-18
https://en.wikipedia.org/wiki/Hardware_acceleration#cite_note-Farabet-18
https://en.wikipedia.org/wiki/Complex_programmable_logic_device
https://en.wikipedia.org/wiki/Complex_programmable_logic_device

Edge AI drives
hardware for on-
device machine
learning inference.

@article{Reuther2019SurveyAB, title={Survey and

Benchmarking of Machine Learning Accelerators}, author={A.

Reuther and Peter Michaleas and Michael Jones and Vijay

Gadepally and Siddharth Samsi and Jeremy Kepner},

journal={2019 IEEE High Performance Extreme Computing

Conference (HPEC)}, year={2019}, pages={1-9},

url={https://api.semanticscholar.org/CorpusID:201668230} }

Tiny ML hardware
(today) is optimized
for forward workloads

1

2

.

Forward-Forward and PEPITA

Learning: biological plausibility

❏ The brain learns by modifying the

synaptic individual connections between

neurons3

❏ It’s not known how the single

modifications are coordinated to achieve a

global’s goal

❏ Loop-based neuron circuits seems used

to get error signals and credits (i.e. how

much each synapse contributes to the

error) assigned to other synapsis of

neurons

3T. Lillicrap, A. Santoro, L. Marris, C. Akerman, and G.

Hinton,“Backpropagation and the brain,” Nature Reviews Neuroscience,

vol. 21, no. 6, p. 335–346, 2020.

3 neurons in a loop
Not a loop

Our brain does not use backpropagation4

Backpropagation vs bio-plausibility?

16

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p.

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0

Our brain does not use backpropagation4

1. No weight symmetry

a) error is not projected back using the

same weights of the forward pass

17

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p.

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0

Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

a) intermediate activations are not stored

18

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p.

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0

Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

3. No locality of the loss function

a) Neurons do exchange error signals and

credits within loops

b) Synapsis learn from local signals

19

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p.

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0

Our brain does not use backpropagation4

1. No weight symmetry

2. No neural activity freeze

3. No locality of the loss function

4. No Update-locking

a) No need to wait the end of the backward

pass to update the weights of the layers

b) There is no backward pass

20

Backpropagation vs bio-plausibility?

4Crick, “The recent excitement about neural networks,” Nature, vol. 337, no. 6203, p.

129—132, January 1989. [Online]. Available: https://doi.org/10.1038/337129a0

Biologically plausible method Citation

DRTP Direct Random Target Projection

C. Frenkel, M. Lefebvre and D. Bol, "Learning without feedback: Fixed Random

Learning Signals Allow for Feedforward Training of Deep Neural Networks," Frontiers

in Neuroscience, vol. 15, no. 629892, 2021. doi: 10.3389/fnins.2021.629892

GEVB Global Error Vector Broadcasting

Clark, David, L. F. Abbott, and SueYeon Chung. "Credit assignment through

broadcasting a global error vector." Advances in Neural Information Processing

Systems 34 (2021): 10053-10066.

WM Weight Mirroring

Akrout, Mohamed, et al. "Deep learning without weight transport." Advances in neural

information processing systems 32 (2019).

FA Feedback Alignment

Lillicrap, Timothy P., et al. "Random feedback weights support learning in deep neural

networks." arXiv preprint arXiv:1411.0247 (2014).

DFA Direct Feedback Alignment

Nøkland, Arild. "Direct feedback alignment provides learning in deep neural

networks." Advances in neural information processing systems 29 (2016).

DFC Deep Feedback Control

Meulemans, Alexander, et al. "Credit assignment in neural networks through deep

feedback control." Advances in Neural Information Processing Systems 34 (2021):

4674-4687.

CLAPP Contrastive Local And Predictive

Plasticity

Illing, Bernd, et al. "Local plasticity rules can learn deep representations using self-

supervised contrastive predictions." Advances in Neural Information Processing

Systems 34 (2021): 30365-30379.

A lot of work in 30 years…

DFC

FA

DFA

CLAPP

GEVB

WM

21

DRTP

Biologically plausible method Citation

DRTP Direct Random Target Projection

C. Frenkel, M. Lefebvre and D. Bol, "Learning without feedback: Fixed Random

Learning Signals Allow for Feedforward Training of Deep Neural Networks," Frontiers

in Neuroscience, vol. 15, no. 629892, 2021. doi: 10.3389/fnins.2021.629892

GEVB Global Error Vector Broadcasting

Clark, David, L. F. Abbott, and SueYeon Chung. "Credit assignment through

broadcasting a global error vector." Advances in Neural Information Processing

Systems 34 (2021): 10053-10066.

WM Weight Mirroring

Akrout, Mohamed, et al. "Deep learning without weight transport." Advances in neural

information processing systems 32 (2019).

FA Feedback Alignment

Lillicrap, Timothy P., et al. "Random feedback weights support learning in deep neural

networks." arXiv preprint arXiv:1411.0247 (2014).

DFA Direct Feedback Alignment

Nøkland, Arild. "Direct feedback alignment provides learning in deep neural

networks." Advances in neural information processing systems 29 (2016).

DFC Deep Feedback Control

Meulemans, Alexander, et al. "Credit assignment in neural networks through deep

feedback control." Advances in Neural Information Processing Systems 34 (2021):

4674-4687.

CLAPP Contrastive Local And Predictive

Plasticity

Illing, Bernd, et al. "Local plasticity rules can learn deep representations using self-

supervised contrastive predictions." Advances in Neural Information Processing

Systems 34 (2021): 30365-30379.

Forward-Forward

Hinton, Geoffrey. "The forward-forward algorithm: Some preliminary

investigations." arXiv preprint arXiv:2212.13345 (2022).

Present the Error to Perturb the Input To

modulate Activity Dellaferrera, Giorgia, and Gabriel Kreiman. "Error-driven input modulation: solving

the credit assignment problem without a backward pass." International Conference on

Machine Learning. PMLR, 2022.

A lot of work in 30 years…

DFC

FA

DFA

CLAPP

GEVB

WM

FF

PEPITA 22

DRTP

Forward-Forward5

23
5G. Hinton, “The forward-forward algorithm: Some preliminary

investigations,” ArXiv, vol. abs/2212.13345, 2022.

Positive weight update of each layer

independently from the next ones

(locality)
Forward

inference

Activations of

each layer are

normalized

Forward

inference

Positive

data
Negative

data

Negative weight update of each layer

independently from the next ones

(locality)

Activations of

each layer are

normalized

log(p)

layer normalizationNL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

Forward-Forward5

▪ The goodness function G(𝑎𝑙) is defined

at each layer; e.g. it can be the sum of the

squared 𝑎𝑙 activations

▪ The probability of being classified as a

positive data is

▪ Then maximize the log(𝑝) for positive data

and minimize it for negative
𝑊𝑙

▪ 2 variants: supervised and unsupervised

→ same learning procedure, different

forward procedures

▪ Supervised variant: n passes, for n

classes

5G. Hinton, “The forward-forward algorithm: Some preliminary

investigations,” ArXiv, vol. abs/2212.13345, 2022.

PEPITA6

26

6G. Dellaferrera and G. Kreiman, “Error-driven input modulation:

Solving the credit assignment problem without a backward pass,”

ArXiv, vol. abs/2201.11665, 2022.

Compute the

error at the output

Random matrix F, with zero

mean and small variance, to

project the error on the inputs

Weights update by using the

forward pass computed activations

(stored in memory #) with the

modulated ones

Forward inference

Store activations #

Forward inference

Store activations #

PEPITA6

27

a_l –a_l^(err)

layer NL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

W_l

layer NL Next layer

𝑎𝑙−1 𝑧𝐿 𝑎𝐿

W_l

err err err

6G. Dellaferrera and G. Kreiman, “Error-driven input modulation:

Solving the credit assignment problem without a backward pass,”

ArXiv, vol. abs/2201.11665, 2022.

Standard pass

Modulated pass

.Research question

29

At which computational and memory cost

would FF and PEPITA learning algorithms compare

to BP if applied to MLCommons/Tiny benchmarks ?

29

Contributions today

30

Introducing MEMPEPITA to not store

intermediate activations. Memory savings

expected !

Computational complexity and memory footprint

of FF, PEPITA and MEMPEPITA for the

MLCommons/Tiny benchmarks

MEMPEPITA

31

Forward inference

Forward inference

Introduces a second standard pass which runs

simultaneously along with modulated pass

Weights update by using the forward

pass re-computed activations with

the modulated ones

Compute the

error at the output

Random matrix F, with zero mean and

small variance, to project the error

onto the inputs

Forward inferences

thus recomputing

activations instead

of storing them into

memory

Introduces a second standard pass which runs

simultaneously along with modulated pass

MEMPEPITA
Standard Pass

Modulated

Pass

Error projection

Standard Pass

Parameters

Update

Summary of the learning procedures

33

Method BP

(number)

FF

(number)

PEP

(number)

MPE

(number)

Forward

passes

1 2 2 3

Backward

passes

1 0 0 0

Weight

update

1 2 1 1

Loss function Global Local Global Global

Activations all current all current

PEP = PEPITA

MPE = MEMPEPITA

Local = loss function per layer

Global = loss function at the output layer

All = all layers

Current = current layer

Methodology

MLCommons/Tiny

35
https://github.com/mlcommons/tiny

Use Case Description Dataset Model Quality Target

(Closed Division)

Audio Wake Words Small vocabulary

keyword spotting

Speech Commands DS-CNN 90% (Top1)

Visual Wake Words Image classification

(2 classes)

Person Detection MobileNet 80% (Top1)

Image

Classification

32x32 tiny Images

Classification (10

classes)

Cifar10 ResNet 85% (Top1)

Anomaly Detection Detecting

anomalies in

machine operating

sounds

ToyADMOS Deep AutoEncoder 0.85 (AUC)

MCU deployability

▪ MLCommons/Tiny framework specifies number of

samples and epochs

▪ Weights, biases, activations represented in INT8

▪ Softmax layer represented in FLOAT32

▪ MACCs represented in INT8

▪ No layer memory overwrite

▪ Batch normalization not considered.

▪ 𝐶𝑦𝑐𝑙𝑒𝑠/𝑀𝐴𝐶𝐶 and processor’s frequency

▪ Results validated with STM32Cube.AI Developer Cloud

36

STM32H735G-DK

550MHz

NUCLEO-G474RE

170MHz

https://stm32ai-cs.st.com/home

37

Complexity analisys: Assumptions

Comput

ations

required

Forward

pass

Error at

output

layer

Backward

pass

Weight

update

Goodness

function

Normalization Error

projection

BP 1 1 1 1

FF 2 2 2 2

PEP 2 1 1 1

MPE 3 1 1 1

RAM estimation

38

Learning procedure Activations RAM during training

BP and PEP Sum of the activation buffers of all layers

FF Max value of the sum of the activation buffers of two consecutive layers + the

input sample

MPE Max value of the sum of the activation buffers of two consecutive layers + the

largest activation buffer between these two layers

𝐓𝐨𝐭𝐚𝐥 𝑹𝑨𝑴 = 𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝒔 𝑹𝑨𝑴 + 𝒇𝒐𝒐𝒕𝒑𝒓𝒊𝒏𝒕 (𝒘𝒆𝒊𝒈𝒉𝒕𝒔 + 𝒃𝒊𝒂𝒔𝒆𝒔)

Results

40

Learning procedure: the analysis

40

Model/Dataset DS-CNN/SC/KWS MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS/Anomaly Detection

Learning method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Training

MAC

C (M)
7.7 +43% +4% +39% 22 +41% +3% +37% 37 +36% +1% +35% 0.7 +50% +69% +106%

ACT

(KiB)

+253

%
21 +253% +37% +213% 83 +213% +11% +118% 52 +118% +57% +64% 1.4 +64% 1.4

PAR/

ACT
0.3 1.1 0.3 0.8 0.8 2.5 0.8 2.3 0.7 1.5 0.7 0.9 115 189 115 189

RAM

(KiB)

+120

%
43 +120% +17% +60% 294 +60% +3% +47% 130 +47% +23% +0.3% 267 +0.3% 267

Architecture CNN FC(AE)

Learning method FF PEP MPE FF PEP MPE

Train

MACC +40% +3% +37% +50% +69% +106%

ACT -65% 0% -51% -39% 0% -39%

RAM -41% 0% -33% -0.3% 0% -0.3%

averaged

Inference procedure: the analysis

41

Model/Dataset DS-CNN/SC MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS

Inference method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Inferen

ce

MACC

(M)
3

+1167

%
3 3 8 +113% 8 8 13 +914% 13 13 0.3 0.3 0.3 0.3

RAM

(KiB)
20 +2.4% 20 20 55 +50% 55 55 49 +6% 49 49 0.8 0.8 0.8 0.8

ROM

(KiB)
22.604 210.85 77.706 265.864

CNN FC(AE)

Inference method FF PEP MPE FF PEP MPE

Inference

MACC +731% 0% 0% +1% 0% 0%

RAM +20% 0% 0% 0% 0% 0%

averaged

Latency per input sample on MCUs

42

Model/Dataset DS-CNN/SC MobileNet/VWW ResNet/Cifar10 AE/ToyADMOS

Learning method BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE BP FF PEP MPE

Training

(ms)

H7 42 +43% +4% +39% 122 +41% +3% +37% 202 +36% +1% +35% 4 +50% +69% +106%

G4 203 +43% +4% +39% 592 +41% +3% +37% 982 +36% +1% +35% 19 +50% +69% +106%

Inference

(ms)

H7 14.5
+1165

%
14.5 14.5 42 +113% 42 42 68 +914% 68 68 1.4 +1% 1.4 1.4

G4 71
+1165

%
71 71 202 +113% 202 202 332 +914% 332 332 7 +1% 7 7

H7 = STM32H735G-DK @ 550 MHz

G4 = NUCLEO-G474RE @ 170 MHz

▪ LEARNING → FF and MEMPEPITA

▪ reduced activations (ACT) storage on average 40% to 65% (w.r.t. BP),

▪ increased MACCs 40% to 100%

▪ PEPITA (same memory as BP) increased MACCS (CNN) 3%, (FC) 69%.

▪ Total RAM reduction is noticeable if the topology has low

parameters/activations (FC vs CNN). → e.g. for DS-CNN is 0.3 and RAM

reduction is around -100%

▪ INFERENCE → MEMPEPITA, PEPITA and BP featured 1 forward pass, while

supervised FF adds 2-3x more computation due to N forward passes, for N

classes
43

Take-aways

44

About training → MEMPEPITA reduced total

RAM, (CNN) 33%, (FC) 0.3%, at the expense of a

third more MACCs.

Inference complexity was unchanged

REMEMBER

Github repo

45

https://github.com/fabrizioaymone/suitability-of-Forward-Forward-and-PEPITA-learning

https://github.com/fabrizioaymone/suitability-of-Forward-Forward-and-PEPITA-learning

.

Q&A

46

Further questions ? Please contact: danilo.pau@st.com

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

http://www.st.com/trademarks
http://www.st.com/

Copyright Notice

This multimedia file is copyright © 2023 by tinyML
Foundation. All rights reserved. It may not be duplicated
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML
Foundation.

www.tinyml.org

Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

	Slide 1: “Suitability of Forward-Forward and PEPITA Learning to MLCommons-Tiny benchmarks”
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Reminders
	Slide 8: Danilo Pau
	Slide 9: Fabrizio Aymone
	Slide 10
	Slide 11: Executive Strategic Partners
	Slide 12
	Slide 13
	Slide 14: Platinum Strategic Partners
	Slide 15
	Slide 16: Gold Strategic Partners
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Copyright Notice
	Slide 28: Copyright Notice
	IEEE COINS_DP_04072023_TML.pdf
	Slide 1: Suitability of Forward-Forward and PEPITA Learning to MLCommons-Tiny benchmarks
	Slide 2: Agenda
	Slide 3: Reduce activations, not trainable parameters for efficient on-device learning1
	Slide 4: Reduce activations, not trainable parameters for efficient on-device learning1
	Slide 5: Backpropagation
	Slide 7
	Slide 8
	Slide 9
	Slide 10: MCUNetV32
	Slide 11: MCUNetV32
	Slide 12: Hardware acceleration
	Slide 13
	Slide 14: .
	Slide 15: Learning: biological plausibility
	Slide 16: Backpropagation vs bio-plausibility?
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: A lot of work in 30 years…
	Slide 22: A lot of work in 30 years…
	Slide 23: Forward-Forward5
	Slide 24
	Slide 25
	Slide 26: PEPITA6
	Slide 27: PEPITA6
	Slide 28
	Slide 29: .
	Slide 30: Contributions today
	Slide 31: MEMPEPITA
	Slide 32: MEMPEPITA
	Slide 33: Summary of the learning procedures
	Slide 34: Methodology
	Slide 35: MLCommons/Tiny
	Slide 36: MCU deployability
	Slide 37: Complexity analisys: Assumptions
	Slide 38: RAM estimation
	Slide 39: Results
	Slide 40
	Slide 41: Inference procedure: the analysis
	Slide 42: Latency per input sample on MCUs
	Slide 43: Take-aways
	Slide 44
	Slide 45: Github repo
	Slide 46: .
	Slide 47

