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https://www.wevolver.com/article/2023-edge-ai-technology-report
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Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Foroozan Karimzadeh
Foroozan Karimzadeh is currently a postdoctoral fellow at 

Georgia Institute of Technology. She received her PhD 

degree at Electrical and Computer Engineering department, 

Georgia Institute of Technology under supervision of Dr. 

Raychowdhury in 2022. Her research interest mainly 

includes developing novel algorithms and hardware co-

design for energy efficient deep learning and large 

language models. She was selected as an MIT rising star in 

EECS, 2023. Foroozan was awarded a prestigious 

Semiconductor Research Corporation (SRC) Graduate 

Fellowship, which is awarded in partnership with Texas 

Instruments. Also, she received DAC Young fellow award at 
Design and Automation Conference, 2022.
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Devices are Getting Smarter

AI Augmentation will create 

$3.3 Trillion
of business value by 2025.

Source Gartner, Qualcomm

AI
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Data Explosion and AI

20252010

Exponential 

Growth in 

Unstructured 

Data

Structured Data

175 ZB
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Intelligence 

is Moving to 

the Edge

Privacy

Reliability

Low Latency

Low bandwidth

Source Qualcomm, Cisco

AI at the Edge: Benefits
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Computer Vision Health Care Systems Natural Language Processing

AI at the Edge: Benefits
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AI at the Edge: Challenges

Hardware constrained:

Memory and bandwidth limitations

Power/battery constrained

DNN model workload:

Large and over-parameterized models

Computationally intensive

Always on and real-time processing
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• Deep Neural Network: Large model size.

• Edge Devices: Resource (Memory, Energy) constrained.

Operation Energy [pJ]

32-bit float ADD 0.9

32-bit float MULT 3.1

32-bit SRAM Cache 5

32-bit DRAM Memory 640

Han, Song, et al. "Learning both weights and connections for efficient neural 

network." Advances in neural information processing systems. 2015.

10001
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AI at the Edge: Challenges
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Making power efficient AI

Efficient 

Hardware

Software 

Advances

AI

AI at the Edge: Solutions
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DNN compression: Bit and Network-level Sparsity

Twofold Sparsity: Joint Bit- and Network-level Sparse 

Deep Neural Network for Energy-efficient RRAM Based 

Compute-In-Memory

•Foroozan Karimzadeh, R Raychowdhury. “Twofold sparsity: Joint Bit Network- level Sparse Deep Neural Network for Energy-efficient RRAM Based 

Compute-In-Memory”. IEEE transaction of Circuit and Systems (IEEE-TCAS I)
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Deep Learning on Mobile: Prior Works

Network compression via pruning techniques.

Previous Pruning 

Methods

Block based

Th-weight 

sharing based

Han et. al 2016

Kadetotad et. al 2019

Hardware-aware Pruning of DNNs using 

LFSR-Generated Pseudo-Random Indices 

• Not designed to address the real hardware bottlenecks.

• Sparsity matrices add extra levels of irregularity to the 

weights’ matrices.

• Extra memory to save the addresses.

Threshold 

(Th) based

Han et. al 2015
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Why Compute-In-Memory (CIM)?

CIM architectures :

A memory cell itself serves as a PE and memory

Low-latency 

Von Neumann architecture :

Prohibitive power dissipation

Massive data transfer between the PEs and memory

High Latency



Yu, Shimeng. "Neuro-inspired computing with emerging nonvolatile 

memorys." Proceedings of the IEEE 106.2 (2018): 260-285.
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Motivation: Why Compute-In-Memory (CIM)?
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Yu, Shimeng. "Neuro-inspired computing with emerging nonvolatile 

memorys." Proceedings of the IEEE 106.2 (2018): 260-285.
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Motivation: Why Compute-In-Memory (CIM)?

Motivation:

Having more“0”s in the network, as opposed to “1”s 

reduces the total energy dissipated during inference.
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Motivation: 2bit/cell CIM

H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury, “A 40nm 100kb 118.44 tops/w ternary-weight compute in-

memory rram macro with voltage-sensing read and write verification for reliable multi-bit rram operation,” CICC. IEEE, 2021.
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Architecture of voltage-sensing multi-bit RCIM architecture
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X W E(pJ/2bits)
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Energy for multiplication

H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury, “A 40nm 100kb 118.44 tops/w ternary-weight compute in-

memory rram macro with voltage-sensing read and write verification for reliable multi-bit rram operation,” CICC. IEEE, 2021.
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Architecture of voltage-sensing multi-bit RCIM architecture

Motivation: 𝑬𝟏𝟏 = 𝟐𝟎 × 𝑬𝟎𝟎

It is desirable to have more 

00s and 01s than 10s and 11s

Motivation: 2bit/cell CIM
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Post-pruning

Network-level

+

Bit-level

Post-pruning

+

Requantization

Initialization

IFSR indexing

+
8bit 

pretrained

Retraining

Masked weights

+

Requantization
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Initialization

IFSR indexing

+

8bit pretrained

Indices from LFSR

1 0 0 1

1 1 0 0

0 1 0 1

0 0 1 0

Mask

0 1 1…
Output Seq.

Input Seed

…011001

𝒎 𝒐𝒓 𝒏, 𝒔. 𝒕. 𝒘𝒎×𝒏

0 1 1… 01

MSBs

LFSR

LFSR Indexing Generator (LIG) Block

x
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Network-level

+

Bit-level

Initialization

IFSR indexing

+
8bit 

pretrained

𝜆 

𝑙=0

𝐿

𝑊 𝑙 ⊙ 𝑀 𝑙

2

Indices from LFSR

1 0 0 1

1 1 0 0
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2

0.0
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2.3 0.0

3

3.6

0.1 0.0

1

1.9 0.0
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⊙

𝐽 = 𝐿𝐶𝐸 + 𝑅𝑒𝑔𝑁𝑒𝑡 + 𝑅𝑒𝑔𝐵𝑖𝑡 MaskWeight matrix
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Network-level

+

Bit-level

Initialization

IFSR indexing

+

8bit pretrained

𝐽 = 𝐿𝐶𝐸 + 𝑅𝑒𝑔𝑁𝑒𝑡 + 𝑅𝑒𝑔𝐵𝑖𝑡



• Scaling:

𝑊 = 𝑠 . 𝑊𝑠

𝑠 = max |𝑊|
• Quantization 

𝑊𝑞 =
𝑅𝑜𝑢𝑛𝑑 𝑊𝑠 × 2𝑏−1 − 1

2𝑏−1 − 1
, where 𝑤𝑞 ∈ 0, ±

1

2𝑏−1 − 1
, ±

2

2𝑏−1 − 1
, … , ±1

• Binary conversion (2’s complement) 

Wq =
−𝑊𝑠

𝑏−12𝑏−1 + σ𝑛=0
𝑏−2 𝑊𝑠

(𝑛)
2𝑛

2𝑏−1 − 1

• Example
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Bit Sparsity: DNN Training under Bit Representation

𝑊 =

1.4
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−1.8
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7

5
7
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=
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7

0 1 0 1
0 1 1 1
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𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝐵𝑖𝑛𝑎𝑟𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

(2′s complement format)
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Network-level

+

Bit-level

Initialization

IFSR indexing

+

8bit pretrained

𝐽 = 𝐿𝐶𝐸 + 𝜆 
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Post-pruning

Network-level

+

Bit-level

Post-pruning

+

Requantization

Initialization

IFSR indexing

+

8bit pretrained

0.7
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5
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-0.9 0 0

0 0.2

8
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0 0 1 0

0.7 0 0 0.1
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Method: Twofold Sparsity

Joint Bit- and Network-level Sparsity

Training with 

Regularization

Post-pruning

Network-level

+

Bit-level

Post-pruning

+

Requantization

Initialization

IFSR indexing

+

8bit pretrained

0.7 0.1 0.3 -0.9 0.2 -0.8 1

0.7 0 0 0.1

0.3 -0.9 0 0

0 0.2 0 -0.8

0 0 1 0

Saved in the memory based on the 

generated PRS from LFSR

Retraining

Masked weights

+

Requantization

• Masked weights

• Smaller reg. parameters



1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0
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Deep Learning Compression: Hardware

0 1 1…

Output Seq.
Input Seed

…011001

𝑴 𝒐𝒓 𝑵, 𝒔. 𝒕. 𝒘𝑴×𝑵

0 1 1… 01

MSBs

LFSR:

P.P. : 𝒙𝒏 + 𝒄𝒏−𝟏𝒙𝒏−𝟏 + ⋯ + 𝟏

LFSR Indexing Generator (LIG) Block

xlog2(M) bits

𝑃. 𝑃. = 𝑋9 + 𝑋4 + 1;  𝑀 = 300

𝑀 = 300

Output Seq.
Input Seed

…011001

One Output Seq. = 461

x

461×300=138300 

MSBs

Row Index = Output Seq. = 270

Row 

Index

1 1 1 0 0 1 1 0 1

1 1 1 0 1 0 1 1 0

Example: 

1 0 0 0 0 1 1 1 0

1. LFSRs can be easily be 

implemented in hardware.

2. Preserves the rank of the generated 

connectivity matrix.

3. Real-time and automatic address 

generator using LFSR.

4. No need to store addresses of sparse 

weight matrix. 
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Result: Twofold sparsity, Accuracy

• ResNet-20 using CIFAR-10 dataset.

• Accuracy of the network in different sparsity (%).

• Accuracy before post training is slightly higher.
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Result: Twofold sparsity, Energy

Energy(pJ/2bits)

00 0.079

01 0.36

10 0.73

11 1.49

ADC 0.208

• ResNet-20 using CIFAR-10 dataset.
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Email address: fkarimzadeh6@gatech.edu

Thank You!
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