
“tinyML: Designing Efficient Neural Architectures and Scaling 
Strategies for Edge Computing”

Francesco Paissan – Junior Researcher, Fondazione Bruno Kessler (FBK)

November 28, 2023



Thank you, tinyML Strategic Partners, 
for committing to take tinyML to the next Level, together



Executive Strategic Partners

12





1

Making Edge AI A Reality

Accelerate Your Edge Compute 

www.syntiant.com 

http://www.syntiant.com/


Platinum Strategic Partner

15
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Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI
AT THE EDGE AT SCALE



Gold Strategic Partners

17



tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories



The Leading Development 
Platform for Edge ML

edgeimpulse.com





NEUROMORPHIC 
INTELLIGENCE FOR THE 

SENSOR-EDGE

www.innatera.com





www.st.com/ai

STMicroelectronics provides extensive 
solutions to make tiny 
Machine Learning easy



© 2022 Synaptics Incorporated 24

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com



Silver Strategic Partners



Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

17.7k members in
49 Groups in 41 Countries

4k members 
          &
13k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML 

11k subscribers, 633 videos with 391k views 

http://www.youtube.com/tinyML


tinyAI Forum on PdM & Anomaly 
Detection 2023

Interactive live webinar December 5, 2023 at 8AM Pacific Time
Registration is free of charge 



tinyML Research Symposium
April 22, 2023
Call for Papers



tinyML Summit April 23-24, 2024
Call for Presentations and Posters
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https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report


Reminders

youtube.com/tinyml

Slides & Videos will be posted tomorrow

tinyml.org/forums

Please use the Q&A window for your questions



Francesco Paissan
Francesco Paissan has been a Junior Researcher in the 
Energy Efficient Embedded Digital Architectures (E3DA) 
unit in Fondazione Bruno Kessler (FBK) since 2018. His 
research interests include diverse topics, from developing 
and modelling scalable neural architectures for multimedia 
analytics to bio-signals analysis with deep learning 
architectures. In 2021, Francesco joined the LEGEND 
experiment for the design of novel physics-inspired ML 
algorithms (e.g. learning-based triggering logics for 
cosmogenic rejection in the experiment's veto). Francesco 
was a research intern at the Montreal Institute of Learning 
Algorithms (Mila) in Montreal, where he worked on post-hoc 
interpretability techniques for neural networks. WWW 
speaker: https://francescopaissan.it/



tinyML: Designing E�cient Neural Archictures
and Scaling Strategies for Edge Computing

Francesco Paissan

Energy E�cient Embedded Digital Architectures
Fondazione Bruno Kessler

fpaissan@fbk.eu

November 28, 2023

Francesco Paissan (FBK) November 28, 2023 1 / 47



Presentation Overview

1 Introduction
The Five (-1) Ws of tinyML
Challenges of tinyML

2 Neural Network design
Rise and development of CNNs
tinyML-�rst CNNs
Hardware-Aware Scaling

3 Some applications...
YOLO-based
Zero-shot audio classi�cation
micromind
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The Five (-1) Ws of tinyML

What?
• a fast-growing sub�eld of machine learning targeting
on-device and near-sensor processing;

Why?
• many practical bene�ts (e.g. bandwidth reduction,
infrastructure sustainability, scalability);

• privacy by design: enable processing on-device, thus sensitive
data is never leaked;

When?
• not clear, it was a continuous process, sometimes driven by
necessity...
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Who?

(tiny)AI researchers:
• come up with novel ML algorithms to compress and simplify
NN model;

• generally approach tinyML as a ML problem;

(AI)Embedded engineers:
• design custom NN accelerator and neuromorphic processors
to speed up NN inference;

• approach tinyML as an engineering problem;

But there’s stu� also in the gray area...

Francesco Paissan (FBK) November 28, 2023 5 / 47



Who?

(tiny)AI researchers:
• come up with novel ML algorithms to compress and simplify
NN model;

• generally approach tinyML as a ML problem;

(AI)Embedded engineers:
• design custom NN accelerator and neuromorphic processors
to speed up NN inference;

• approach tinyML as an engineering problem;

But there’s stu� also in the gray area...

Francesco Paissan (FBK) November 28, 2023 5 / 47



Who?

(tiny)AI researchers:
• come up with novel ML algorithms to compress and simplify
NN model;

• generally approach tinyML as a ML problem;

(AI)Embedded engineers:
• design custom NN accelerator and neuromorphic processors
to speed up NN inference;

• approach tinyML as an engineering problem;

But there’s stu� also in the gray area...

Francesco Paissan (FBK) November 28, 2023 5 / 47



Challenges of tinyML?
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Target platforms

microcontrollers, SBC,

neuromorphic processors, ...

small parameter memory available

(kB - MB)

few operations per second

(million ops/s)

small working memory

(kB - MB)

limited operations support

(generally optimized for CNNs)
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A quick peek at the literature
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AlexNet

• ground-breaking CNN from 2012 was
the �rst one to get good results on
ImageNet;

• composed by a sequence of
convolutional blocks, with varying
con�gurations;

x

KxK Conv

ReLU

max-pool

h

Conv
block

Krizhevsky, Sutskever, and Hinton, “ImageNet classi�cation with deep convolutional neural networks”.
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A quick peek at the literature
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ResNet

• improves the performance by
enabling deeper networks via skip
connections;

• again, is composed by a sequence
of convolutional blocks, called
residual blocks;

• residual blocks follow a
wide/narrow/wide structure in the
number of channels;

Wightman, Touvron, and J’egou, “ResNet strikes back: An improved training procedure in timm”.
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ResBlock variants

Wide-narrow-wide channel structure
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A quick peek at the literature
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MobileNet

• tries to improve CNN e�ciency by proposing the inverted
residual block;

• di�erently from a ResBlock, this uses a narrow/wide/narrow
structure in the number of channels;

• additionally, groups are used inside the convolutions to reduce
the computational complexity (depthwise convolutions);

Howard et al., “MobileNets: E�cient Convolutional Neural Networks for Mobile Vision Applications”.
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Inverted Convolutional Block

Wide-narrow-wide Narrow-wide-narrow
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Just for comparison...

As of MobilNetv3 (Nov. 2019)...
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A quick peek at the literature
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E�cientNet

• focuses on how we ‘should’ be scaling CNNs to obtain optimal
performance;

• introduces the concept of compound scaling (i.e. scaling all
dimensions is better than one dimension at a time);

Tan and Le, “E�cientNet: Rethinking Model Scaling for Convolutional Neural Networks”.
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Shortcomings of mainstream CNNs

• these neural networks are too demanding to run on edge
devices and/or compromise performance too much trying to
�t;

• edge devices have di�erent capabilities conf blocks cannot
exploit;

• compound scaling changes all the computational complexities
in a coupled way;
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Ideal CNN for edge processing

• a neural network that can scale to low computational
complexity ( 1 MB of FLASH,  1 MB of RAM);

• a convolutional block that is designed to exploit the available
resourcesmaximally;

• a scaling strategy that allows �tting neural networks on
di�erent edge platforms based on the applications scenarios;

Francesco Paissan (FBK) November 28, 2023 21 / 47



PhiNets

• based on inverted residual blocks, modi�ed to decouple the
computational resources;

• designed and optimized formultimedia analytics at the edge
(audio-video);

• controls RAM (t0), FLASH (�) and operations (↵) using three
hyperparamters;

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power AI at the Edge”.
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PhiNets convolutional block

Narrow-wide-narrow structure for the number of channels...

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power AI at the Edge”.
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The sequence of PhiNets conv blocks

from micromind.networks import PhiNet

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power AI at the Edge”.
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Designing an optimized convolutional block

• PhiNets are designed based on indirect e�ciency metrics,
thus could be an ideal version of edge CNNs;

• what happens if we try to break free of the common standards
for convolutional block design and investigate from �rst
principles?

Let’s see...
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Formal de�nition of e�ciency

De�nition 2.1
We assessed the actual e�ciency of each operator (⌘op) by
calculating the ratio between the energy needed for a standard
convolution (ES) and the energy of the chosen operator (Eop) to
perform an equivalent number of MACs.

⌘op =
ES
Eop

Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for tinyML”.
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Empirical evaluation of CNN operators...
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Empirical evaluation of CNN operators...

• this suggests that standard convolutions (AlexNet-style) are, on
average, more e�cient than other variants;

• but how do we exploit them with low parameter memory?

Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for tinyML”.
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XiNet convolutional block

Wide-narrow-wide structure for channels, and much more...

Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for tinyML”.
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Skip connections and attention block

Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for tinyML”.
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XiNet

• composed by a sequence of XiNet convolutional blocks;

• similarly to PhiNets, its computational complexity is controlled
using three hyperparameters (↵, �,�);

• designed based on the empirical benchmark of the di�erent
operators to be very e�cient;

from micromind.networks import XiNet

Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for tinyML”.
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Hardware-aware scaling

• scaling strategy that exploits the advanced PhiNets and XiNet
architectures;

• helps deploy CNNs on a wide variety of edge platforms via its
one-shot network optimization procedure;

• inverts the mapping between computational complexity
and hyperparameters so that it can be solved with a
mathematical programming toolkit for speci�c computational
requirements;

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power AI at the Edge”.
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Outline

1 Introduction
The Five (-1) Ws of tinyML
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You Only Look Once (YOLO)
• originally proposed as an object detection pipeline;
• well known for its good performance/complexity tradeo�;
• mainly related to its ability to detect objects using only one
inference step (no region proposal networks, etc...);

• recently extended to support image segmentation, keypoint
detection/pose estimation;

Francesco Paissan (FBK) November 28, 2023 34 / 47



YOLO Architecture

In the literature, some works propose to solve a simpli�ed version of the object detection task; thus, reducing
computational complexity... but here is what we do:
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YOLOPhiNet
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YOLOPhinet

Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
achieves power requirements in the order of 10 mW @ 52% mAP on VOC2012.

micromind/recipes/object detection
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YOLOXiNet

Francesco Paissan (FBK) November 28, 2023 38 / 47



YOLOXiNet

Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
Achieves a reduction in the number of operations of 2⇥ and a reduction in RAM
usage of 9⇥ with respect to MCUNet, with the same performance. Achieves a
power consumption of around 20 mW @ 67% mAP on VOC2012.

micromind/recipes/object detection

Francesco Paissan (FBK) November 28, 2023 39 / 47
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Contrastive Language-Audio pretraining

• learns a similarity score between two modalities (audio and
text);

• can be exploited for zero-shot classi�cation;
• makes the network very �exible wrt the applications scenario
they can be deployed to;
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Zero-shot classi�cation
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tinyCLAP

• exploits the learned similarity score to learn amore e�cient
audio network (via a distillation process);

• assumes the pre-trained text encoder does not need to be
deployed;

• achieves good performance-complexity tradeo� for ZS
classi�cation, and state-of-the-art for a benchmark;

micromind/recipes/tinyCLAP

Francesco Paissan (FBK) November 28, 2023 42 / 47

https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP


tinyCLAP

• exploits the learned similarity score to learn amore e�cient
audio network (via a distillation process);

• assumes the pre-trained text encoder does not need to be
deployed;

• achieves good performance-complexity tradeo� for ZS
classi�cation, and state-of-the-art for a benchmark;

micromind/recipes/tinyCLAP

Francesco Paissan (FBK) November 28, 2023 42 / 47

https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP


tinyCLAP

• exploits the learned similarity score to learn amore e�cient
audio network (via a distillation process);

• assumes the pre-trained text encoder does not need to be
deployed;

• achieves good performance-complexity tradeo� for ZS
classi�cation, and state-of-the-art for a benchmark;

micromind/recipes/tinyCLAP

Francesco Paissan (FBK) November 28, 2023 42 / 47

https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP


tinyCLAP: performance

• follows a common power-law scaling behaviour;

• was not yet deployed on edge platforms (WIP);
• 94% reduction in parameter count wrt to original CLAP (from
82M to 4M), with a minor ZS accuracy drop (4% averaged on all
benchmarks);

Paissan and Farella, “tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models”.
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micromind: tinyML research made simple

• not a startup or a research project, just an open-source
project for tinyML research;

• tries to provide the full research pipeline for model design,
development, and deployment;

Checkout the project on GitHub and leave a star!
Follow me on X @fpaissan for updates.
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Additional references to our works
Following is a list of references to works related to the topics discussed in the
presentation:

• Video processing: Ancilotto, Paissan, and Farella, “On the Role of Smart
Vision Sensors in Energy-E�cient Computer Vision at the Edge”; Paissan,
Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power AI at the
Edge”; Ancilotto, Paissan, and Farella, “XiNet: E�cient Neural Networks for
tinyML”

• Generative modeling: Ancilotto, Paissan, and Farella, “PhiNet-GAN: Bringing
real-time face swapping to embedded devices”; Ancilotto, Paissan, and
Farella, “XimSwap: many-to-many face swapping for TinyML”

• Audio processing: Paissan et al., “Scalable Neural Architectures for
End-to-End Environmental Sound Classi�cation”; Brutti et al., “Optimizing
PhiNet architectures for the detection of urban sounds on low-end devices”;
Ali et al., “Scaling strategies for on-device low-complexity source separation
with Conv-Tasnet”; Paissan et al., “Improving latency performance trade-o�
in keyword spotting applications at the edge”

• Multimodal processing: Paissan and Farella, “tinyCLAP: Distilling Constrastive
Language-Audio Pretrained Models”
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